Squirrels Love Medicinal Dandelion Roots

April 8, 2023

A tree squirrel family territory crisscrosses my backyard. The squirrels have a hearty appetite and sample almost everything, consistently avoiding only a few highly aromatic mint family plants. The tall fescue backyard turf is now mostly remnants, having been grazed down by rabbits, packs of dawn-grazing mice, underground grubs and heaven knows what else. All made worse by gardeners from Mexico who trampled and compacted the soil 50 weeks a year for several years with heavy boots and leaf blowers that acted like hair dryers and sealed the soil surface so tightly shut that it was impermeable to water and on its way to resembling their northern Mexico desert homeland. I welcomed the tall weedy dandelions springing up in the bare spots, as I knew their deep taproots would break up the hard soil, which I had sprinkled with commercial potting compost and leaves to hasten soil rebuilding. Dandelion roots create channels for soil air and water movement, and dandelion leaves are repositories for deeper deposits of nutrient minerals brought nearer the soil surface.

That squirrels were munching on dandelion leaves was no big surprise, as some dandelion cultivars are considered salad or cooking greens or associated with traditional medical remedies. Then I started seeing empty holes in the ground where dandelions had once stood tall, as if someone was secretly sneaking in and weeding out the dandelions. But there were no gophers or ground squirrels around, and the compulsive weed haters in the neighborhood favored herbicides over hand-weeding and digging. One day I noticed a squirrel digging in the ground and uprooting a tall dandelion, which it lifted into the air and ate from the bottom of the long taproot to the top with a facial expression of obvious delight. Soon all the dandelion plants were gone, consumed in a frenzied squirrel feast. But new dandelions emerged elsewhere with rosettes of leaves flat to the ground and harder to chew; though the squirrels eventually got those, too. Thus, dandelions lead a tough life, with no means to run from hungry squirrels; and 95% of their fluffy seeds that blow in the wind feed an ecological food chain of seed-loving ground beetles, birds, fungi, soil-dwelling isopods, etc.

But what is it about dandelion roots that squirrels so love, I wondered? Are dandelion roots just tasty and nutritious, or is there more to the story that people have overlooked in their blind zeal to eradicate what they consider a weed? The common dandelion goes by the scientific name, Taraxacum officinale. However, the genus Taraxacum contains about 2,500 dandelion species, only a few of which have received research attention as medicines, anti-cancer drugs, human and animal foods, natural rubber and industrial latex sources, etc.

The term “officinale” in the scientific name for dandelion “literally means belonging to an officina, which in the past indicated the storeroom of a monastery, where medicines and other necessaries were kept,” write Laura Grauso, Giuliano Bonanomi and colleagues in Naples, Italy (Phytochem Rev (2019) 18:1115-1132). “Thus, this species name is given to plants that possess medicinal, culinary, or other uses.” In medieval Europe, before monarchs like England’s Henry VIII and “people’s revolutions” like the French Revolution (Reign of Terror) “confiscated” (nationalized) and “redistributed” their lands, monasteries operated vast agricultural estates accumulated (via donations, bequests, etc.) over many centuries. Monasteries grew and processed herbal medicines, breads and grains, dairy cheeses, wines and beverages, honey and beeswax candles, linen clothing, etc.; which were kept in storerooms or officinas for monastery use and ministering to suffering and poor people seeking help. In today’s modern Western world, warfare-welfare states have taken over the monastery’s charitable functions; and funding now comes from state taxation at rates far exceeding the 10% religious tithe. The scientific term “officinale” is one of the few remnants of the older system, where religious orders doing their duty to help a suffering humanity provided welfare to the poor while monks formulated and ministered medicinal herbs such as dandelion.

Dandelion roots, like those eaten by the squirrels, “have a bitter and turnip-like flavor,” and “if collected from 2-year-old plants, they can be roasted to prepare a coffee substitute,” note the Italian researchers. “Leaves are also quite bitter and that’s why they are often blanched before consuming.” Dandelion wine is brewed from flower petals, sugar and often lemon juice. Since medieval times in Great Britain, dandelion and burdock have been brewed as a carbonated drink.

With the improvement of health awareness, in recent years, dandelion has gradually become a new trend as a medicinal and edible vegetable in China,” wrote Zhe Wu, Xuelin Lu and other researchers at the Institute of Coastal Agriculture in Tangshan, China (Folia Hort. 31(2) (2019): 277-284). Besides being “a widespread weed” with “strong resistance to environmental adversities,” dandelion leads a double-life as “a traditional Chinese herbal medicine which is rich in polysaccharides, phenolic acids, sterols and other substances, and has sterilization, anti-inflammatory, anti-oxidation and immunity enhancement functions.” Methods for commercial growth and harvest of dandelion roots for medicines and natural rubber on otherwise barren lands are being studied in China’s Hebei province. The idea is to make use of abandoned saline-alkaline land where “the soil is mainly composed of muddy saline-silt with a high salt content of even more than 1.2%, which, coupled with less rainfall, leads to a large area of barren land.” In other words, take advantage of the weed’s natural proclivities and harvest it as a crop from abandoned lands otherwise unsuitable for plant growth.

Plants of the genus Taraxacum, commonly known as dandelions, have a history of use in Chinese, Arabian and Native American traditional medicine, to treat a variety of diseases,” and “play a pivotal role in traditional Chinese medicine (TCM) and are frequently used for treatment of breast, uterine and lung tumors as well as hepatitis and digestive diseases,” write Sophia Sigstedt, Wim Steelant and colleagues in New Mexico, USA (International Journal of Oncology 32: 1085-1090, 2008). “The variety of health benefits associated with the use of dandelions has been attributed to specific Taraxacum species.” A few examples: Aqueous root extracts of a Japanese dandelion, Taraxacum japonicum, contain two triterpenoids, taraxasterol and taraxerol, which are effective against skin tumors in mice and inhibit “spontaneous mammary carcinogenesis after oral administration.” Ethanol extracts from roots of a Chinese dandelion, Taraxacum mongolicum, inhibit mouse melanoma cells. Water extracts of common dandelion, Taraxacum officinale, also demonstrate antitumor activity.

Medicinal plants, originating from or related to TCM (traditional Chinese medicine), play an important role in the treatment of cancer and represent a valuable source for the discovery of small molecule inhibitors targeting signal transduction proteins, e.g. kinases, that modulate proliferation and invasion of cancer cells” write the New Mexico researchers. But “the exact reason for the reduction in invasion cannot be explained at present, as many of the known components in the roots and leaves can contribute to the observed effect.” Mostly, this just scratches the surface of dandelion extract anti-cancer potential, as relatively few compounds among several hundred have been isolated and experimentally tested alone or in combination in a dose-response fashion.

In the journal Evidence-Based Complementary and Alternative Medicine (Vol 2019, Article ID 2951428), Christopher Nguyen, Siyaram Pandey and University of Windsor colleagues in Ontario, Canada provide experimental evidence that oral doses of dandelion (Taraxacum officinale) and lemongrass (Cymbopogon citratus) extracts enhance cell death (apoptosis) induction against prostate cancer; and are compatible with reduced doses of standard drugs such as taxol and mitoxantrone. The herbal extracts were “well tolerated” in mice, “as indicated by normal weight gain and food intake.”

Besides enhancing conventional cancer drug efficacy and reducing deleterious side effects, these dandelion and herbal extracts could “improve the quality of life due to reduced toxicity for prostate cancer patients.” In a USA human clinical test with “an aggressive and generally resistant cancer,” chronic myelomonocytic leukemia (CMML), “hematological parameters remained stable” and “bone marrow blast counts vastly improved while taking papaya leaf extract and dandelion root extract,” noted USA researchers Leena Rahmat and Lloyd Damon (Case Reports in Hematology, Vol 2018, Article ID 7267920).

In traditional Chinese medicine (TCM), dandelion extracts have “played a significant role in fighting” annual pandemics of RNA viruses such as influenza A and B and Avian or bird flu. “The lag time between virus identification and vaccine distribution exceeds 6 months and concerns regarding vaccine safety are a growing issue leading to vaccination refusal,” wrote Chinese Academy of Sciences researchers Wen He, Huamin Han, Wei Wang and Bin Gao in 2011 (Virology Journal 2011, 8:538). Drugs have not been very effective, and RNA viruses rapidly develop resistance. However, dandelions are potent inhibitors of influenza virus infections in cell cultures via “inhibition of viral polymerase activity and the reduction of the virus nucleoprotein (NP) RNA level.”

Perhaps more importantly, dandelions are also high in polyphenol compounds effective against RNA viruses and many other pathogens via a physical mechanism. “Polyphenols have protein-binding capabilities, which suggests that components of dandelion extracts may interact with pathogens through physical, non-specific interactions,” wrote Han, Wang and Gao. “Two potential advantages of this non-specific mechanism of action may be that resistant variants only emerge rarely and that dandelion extracts may also act against bacterial co-infections that represent a major complication in severe influenza virus infections.” Research using TCM and dandelion extracts in COVID-19 treatment is underway.

Dandelion is composed of multiple compounds that are able to regulate multiple targets for a range of medical indications and that are able to be titrated to the specific symptoms of an individual,” note the Chinese Academy of Sciences researchers. “Dandelion is a natural diuretic that increases urine production by promoting the excretion of salts and water from the kidney. Dandelion extracts may be used for a wide range of conditions requiring mild diuretic treatment, such as poor digestion, liver disorders, and high blood pressure. Dandelion is also a source of potassium, a nutrient often lost through the use of other natural and synthetic diuretics. Additionally, fresh or dried dandelion herb is used as a mild appetite stimulant and to improve stomach symptoms, including feelings of fullness, flatulence, and constipation. The root of the dandelion plant is believed to have mild laxative effects and is often used to improve digestion.”

Animals such as broiler chickens, plagued by outbreaks of diseases such as Avian or bird flu, can be farm-reared with dandelions or dandelion fermented probiotics as an alternative to antibiotic drugs such as chlortetracycline, suggest South Korean researchers J.I. Oh, G.M. Kim, S.Y. Ko, I.H. Bae, S.S. Lee and C.J. Yang at Sunchon National University. The Korean dandelion, Taraxacum coreanum, and dandelion fermented probiotics were evaluated in controlled and replicated randomized experiments measuring broiler chicken growth and meat quality. Oleic acid content, important to taste and meat quality, was significantly increased (compared to the control) by 0.5% dandelion fermented probiotics. Besides better chicken taste and meat quality, lower blood cholesterol was another dandelion advantage.

Besides being good chicken feed, some dandelion species also have industrial utility as an alternative source of natural rubber; and this can help save rain forests. “Natural rubber is a strategic raw material essential to the manufacture of 50,000 different rubber and latex products” in “the industrial, consumer, medical, and military sectors,” writes Katrina Cornish of the USA’s Ohio Agricultural Research Center (Technology and Innovation, Vol. 18, pp. 245-256, 2017). “World natural rubber consumption is expected to be 16.5 metric tons/year by 2023 and to continue to increase thereafter and lead to “global natural rubber shortages.”

Natural rubber has high-performance qualities not found in synthetic rubbers, currently manufactured from fossil-fuel feedstocks. Natural rubber advantages include: “high elasticity, high resilience, dynamic performance, high tensile strength, good wear resistance, low electrical conductivity, and excellent heat dispersion,” notes Cornish. “Natural rubber properties become progressively more important in tire manufacturing the higher the tire performance required. For example, the rubber component of airplane tires is entirely composed of natural rubber. Compared to natural rubber, synthetic rubbers are more resistant to oil, certain chemicals, and oxygen; have better aging and weathering characteristics; and demonstrate better resilience over a wider temperature range.”

Expanding cultivation of Taraxacum kok-saghyz, also known as rubber root or Russian dandelion (native to Kazakhstan, Uzbekistan, northwestern China) can help meet the growing world need for natural rubber and latex. And at the same time reduce the need to clear Amazon rain forests for plantations of Brazilian rubber trees, Hevea brasiliensis.

Besides Brazilian rain-forest rubber trees and Russian dandelion roots, a slightly different high-quality rubber and latex can be obtained from guayule shrubs (Parthenium argentatum) native to northern Mexico’s Chihuahuan desert. Guayule grows well on non-agricultural lands, like in the USA’s Arizona deserts. Guayule latex lacks the allergens of the other natural rubbers, a major advantage; and has found high-end niche markets like high-altitude weather balloons, lineman’s gloves and condoms. But unlike rubber tree rubber, guayule and dandelion rubber currently lack the economies of scale needed to be widely-used as commodity products. “However, it may be possible to interest manufacturers of high-margin products (e.g., shoes, sports equipment, etc.) in premium-priced, ‘Made in America,’ sustainable Taraxacum kok-saghyz rubber because, unlike tires, such products can absorb large price differentials in their raw materials,” notes Cornish.

My thanks to the squirrels whose love of dandelion roots stimulated interest in this topic.


Honey Bees on the Mind

October 3, 2022

ROSEMARY BUSH BLOOMING, buzzing with bees and birds, a reminder of controversies swirling around pollinators and beneficial insect species. The past Entomological Society of America (ESA) annual meeting featured outstanding virtual presentations on honey bees, bumble bees and pesticides with diverse lethal and sub-lethal effects on fertility, learning, memory, etc. A mindless rush to ban neonicotinoids (neonics, a class of pesticides developed originally in Japan to minimize deleterious effects on beneficial insects like honey bees) has resulted in increased use of worse pesticides (some capable of completely wiping out bee populations). Partly to blame are acutely dysfunctional Tier 1-3 regulatory processes hidden deep in the bureaucratic bowels of the EPA.

University of Texas, Austin researchers are among those leading the charge to have the EPA evaluate sub-lethal effects of all pesticides being considered as neo-nic replacements. Not just on honey bees, but also on bumble bees and other non-Apis native bees (includes lesser-known, less-social squash bees, that are important crop pollinators). Using field-realistic micro-colony experiments with bumble bees, Leeah Richardson found chronic, dose-dependent effects from flupyradifurone, a popular neo-nic replacement: At high concentrations, despite normal birth numbers, all bee larvae were dead by the third instar. In other words, normal numbers of bumble bee larvae were being born, but survival to adulthood was zero. But because adult bees survive flupyradifurone sprays, the pesticide is approved for use on open flowers. Thus, EPA policy (whether inadvertent, incompetent or otherwise dysfunctional seems to favor pollinator abortions before adulthood). Pollinator population control surely is not the goal? Perhaps to regulate otherwise would allow accusations of being pro-life, even if it means stopping abortion of pre-adult honey bees?

Regulatory bureaucracies typically have 3 tiers for evaluating agro-chemicals. Tier 1 is lab experiments with the active ingredient to determine the LD50 (lethal dose to kill 50% of the population). Tier 2 is semi-field experiments (e.g. field cages with treated and untreated flowers for comparisons and evaluation of sub-lethal effects). Tier 3 field trials are very rare, only conducted when Tier 1 and Tier 2 data are inconclusive. “Sub-lethal assessments on native bees, bumble bees, solitary bees really need to be carried out in the regulatory process in Tier 1 as a mandatory requirement,” said UT Austin’s Harry Siviter, who found no advantage from neo-nic replacements such as sulfoxaflor. “Otherwise we are just replacing one insecticide with others that have similar effects.” In other words, choosing winners and losers in the agro-chemical marketplace in an almost arbitrary, nonsensical manner. Welcome to Alice in EPA Land.

Lars Chitka’s new book, The Mind of a Bee (Princeton Univ Press, 2022), is stranger in some ways than Lewis Carroll’s Alice’s Adventures in Wonderland. “Understanding the minds of alien life-forms is not easy, but if you relish the challenge, you don’t have to travel to outer space to find it,” writes Chitka. “Alien minds are right here, all around you. You won’t necessarily find them in large-brained mammals—whose psychology is sometimes studied for the sole purpose of finding human-ness in slightly modified form. With insects such as bees, there is no such temptation: neither the societies of bees nor their individual psychology are remotely like those of humans. Indeed, their perceptual world is so distinct from ours, governed by completely different sense organs, and their lives are ruled by such different priorities, that they might be accurately regarded as aliens from inner space. Insect societies may look to us like smoothly oiled machines in which the individual plays the part of a mindless cog, but a superficial alien observer might come to the same conclusion about a human society. “

“Each individual bee has a mind,” writes Chitka. “That it has an awareness of the world around it and of its own knowledge, including autobiographical memories; an appreciation of the outcomes of its own actions; and the capacity for basic emotions and intelligence—key ingredients of a mind. And these minds are supported by beautifully elaborate brains. As we will see, insect brains are anything but simple. Compared to a human brain with its 86 billion nerve cells, a bee’s brain may have only about a million. But each one of these cells has a finely branched structure that in complexity may resemble a full-grown oak tree. Each nerve cell can make connections with 10,000 other ones—hence there may be more than a billion such connection points in a bee brain—and each of these connections is at least potentially plastic, alterable by individual experience. These elegantly miniaturized brains are much more than input-output devices; they are biological prediction machines, exploring possibilities. And they are spontaneously active in the absence of any stimulation, even during the night.”

“To explore what might be inside the mind of a bee, it is helpful to take a first-person bee perspective, and consider which aspects of the world would matter to you, and how,” writes Chitka. “I invite you to picture what it’s like to be a bee. To start, imagine you have an exoskeleton—like a knight’s armor. However, there isn’t any skin underneath: your muscles are directly attached to the armor. You’re all hard shell, soft core. You also have an inbuilt chemical weapon, designed as an injection needle that can kill any animal your size and be extremely painful to animals a thousand times your size—but using it may be the last thing you do, since it can kill you, too. Now imagine what the world looks like from inside the cockpit of a bee. You have 300 degree vision, and your eyes process information faster than any human’s. All your nutrition comes from flowers, each of which provides only a tiny meal, so you often have to travel many miles to and between flowers—and you’re up against thousands of competitors to harvest the goodies. The range of colors you can see is broader than a human’s and includes ultraviolet light, as well as sensitivity for the direction in which light waves oscillate. You have sensory superpowers, such as a magnetic compass. You have protrusions on your head, as long as an arm, which can taste, smell, hear, and sense electric fields. And you can fly.”

Honey bee research has been a source of inspiration and innovation, and many cite Karl von Frisch, celebrated for his research on bee dances as a form of communication. Von Frisch shared The Nobel Prize in Physiology or Medicine 1973 with Konrad Lorenz and Nikolaas Tinbergen “for their discoveries concerning organization and elicitation of individual and social behaviour patterns”. Thomas D. Seeley of Cornell University writes in the 2022 Annual Review of Entomology: “In the 1920s, Karl von Frisch described a forager producing this dance as follows: “[she makes] trembling movements forward and backward, and right and left”. The meaning of this strange behavior remained a mystery to von Frisch for more than 50 years, and near the end of his career he wrote, “I think it tells the other bees nothing. . .and perhaps is comparable to the condition that Florey has described as a neurosis”.

“I solved this mystery in the early 1990s when I discovered that a nectar forager produces a tremble dance when she visits a rich nectar source but then, upon returning home, has difficulty finding a bee willing to receive her nectar load,” writes Seeley. “The tremble dance calls bees to work as nectar receivers at the start of a nectar flow, just like the whistle atop a sardine factory in Maine calls villagers to work as sardine packers when fishing boats arrive laden with herring. It was thrilling to discover the meaning of this dance. Martin Lindauer once told me that Karl von Frisch had said that he would award a prize to whoever deciphered the message of the tremble dance. Alas, he died in 1982, nine years before I solved this puzzle. My studies of how a honey bee colony nimbly and wisely allocates its foragers among flower patches, despite never-ending changes in the locations of the richest ones, did lead to a different prize some years later. This bee work inspired two computer scientists at Georgia Tech to create the Honey Bee Algorithm (HBA). The HBA is widely used in internet hosting centers (analogous to hives) to optimally allocate webservers (analogous to foragers) among jobs (analogous to flower patches), so it is integral to the multi-billion-dollar industry of cloud computing. In 2016, the American Association for the Advancement of Science awarded me and four professors of engineering at Georgia Tech—John J. Bartholdi, Sunil Nakrani, Craig Tovey, and John Vande Vate—its Golden Goose Award. This award recognizes esoteric research that proves extremely valuable (i.e., that lays lots of “golden eggs”).”

In the German to English translation of his 1953 book, The Dancing Bees, Von Frisch wrote: “SUPPOSE German and English bees were living together in the same hive, and one of the Germans found a lot of nectar: its English companions would easily understand what it had to say about the distance and direction of the find…If we use excessively elaborate apparatus to examine simple natural phenomena Nature herself may escape us. This is what happened some forty-five years ago when a distinguished scientist, studying the colour sense of animals in his laboratory, arrived at the definite and apparently well-established conclusion that bees were colour-blind. It was this occasion which first caused me to embark on a close study of their way of life; for once one got to know, through work in the field, something about the reaction of bees to the brilliant colour of flowers, it was easier to believe that a scientist had come to a false conclusion than that nature had made an absurd mistake. Since that time I have been constantly drawn back to the world of the bees and ever captivated anew. I have to thank them for hours of the purest joy of discovery, parsimoniously granted, I admit, between days and weeks of despair and fruitless effort.”

As has been demonstrated time and time again, nothing is ever conclusively established and beyond challenge in science. Though for periods of time beliefs get set in stone until demolished (1,500 years in the case of some of Aristotle’s nature observations). In the 1920s and 1930s, Nobel Prize-winning immunologists and the American Medical Association doubted the existence of phages (viruses that kill bacteria) and prohibited research on the subject, until finally proven wrong with the invention of the electron microscope. Perhaps it will be the same with the much-contested CO2 climate change hypothesis, currently enthroned on a golden pedestal and considered beyond discussion. Change is a constant, as Adrian Horridge documents in his history of insect vision.

In his book, The Discovery of a Visual System: The Honeybee (CABI, 2019), Adrian Horridge, a honeybee researcher in the UK and Australia since at least 1945, puts forth his controversial history of honeybee visual research. “Beside this saga of contending personalities, this is in fact a serious book that attacks the detail and gist of the compound eye of a typical day-flying insect…The topic of this book is the much-needed revision that puts insect vision as exemplified by the bee, and dim-light vision in other insects, back on track. The new paradigm for visual inputs of the compound eye is one tonic colour blue and two derivatives that are rates of change in blue and green receptor channels. I hope that the novel prospect will be of interest to engineers of robot vision…There is universal inertia against innovation because it is expensive and requires thought, hard work and persistence, and then disrupts set ways. Forces for conformity are now a universal and growing danger that should be resisted. But worst of all, innovation implies an escape from bureaucratic control.” Indeed, insect optics research applied to fiber optics helps enable the World Wide Web and Internet to link computers worldwide at near the speed of light -a major global disruption of social patterns and cultures.

“Already, two major innovations of practical importance have emerged directly from our studies of insect vision,” writes Horridge. “In 1972, from the optics of fly eye, Allan Snyder discovered how the light gets into the light guides. The details were copied into the design of the fibres that carry light pulses for extreme distances in the World Wide Web (Chapter 4). In 1989, Srinivasan, Lehrer, Zhang and I discovered that insects detect a panorama of range by signals created by their own motion, not of objects, and Srinivasan later completed the installation of the resulting applications into mobile vehicles that fly with a computer on board (Chapter 9). The future will bring another important development: reverse engineering of insect vision, simply because insects are examples of extremely sophisticated and well-adapted visual mechanisms at exactly the right level of complexity to be copied into silicon for practical applications, quite unlike our own vision. Moreover, many neurons in an insect, perhaps all, are individually identifiable, and the wiring diagram is also constant, so that we can repeatedly return to precisely the same circuit, neuron or synaptic connection, with a variety of different techniques.”

“As yet, we have no firm circuitry or formal connections in the bee beyond cues and their coincidences,” writes Horridge. “The ways that preferences are established, modified and remembered remain a mystery. We have no idea how bees reach decisions. We have not identified the points where the layout of the two-dimensional image on the eye disappears into responses of line-labelled nerve cells, where odour signals are combined with vision, where traces of the image finally disappear in decisions such as ‘avoid’ and ‘attract’, or where meaningful visual cues are stored in memory. We do not even know whether memory is located at every synapse where the signal passes, or in special localized centres, or in both. A similar state of ignorance applies to every other animal brain, but the bee is one animal where progress is possible, perhaps with the aid of large tropical species.”


Pea Pest Management is Good Medicine

June 17, 2021

THE THIRD EDITION of the Compendium of Pea Diseases and Pests, as is typical of the well-designed, lavishly-illustrated, modestly-priced paperback pest management books published by the American Phytopathological Society (APS; St. Paul, MN), integrates scientific information and color photos helpful for growing healthy peas. In the 20 years between 2nd and 3rd editions, “the acreage of pea (Pisum sativum) production has increased tremendously because of rising demands for a healthy diet and sustainable production systems,” write book editors Robert Harveson, Julie Pasche, Lyndon Porter, Weidong Chen and Mary Burrows.

The pea Compendium target audience is “field workers, diagnosticians, extension specialists, agronomists, horticulturists, entomologists, home gardeners, and other agriculture and horticulture professionals and enthusiasts as well as plant pathologists.” The Compendium strives to be “the preeminent, go-to source of knowledge and reference for pea diseases and insect pests worldwide.”

Peas are a diverse group of thousands of cultivars or varieties and related wild species whose seed colors range from green and yellow to red. There are spring peas and winter peas; tall peas and dwarf peas; grain peas and forage peas; yellow peas and green peas; round peas and wrinkled peas, etc. Hence, a concise illustrated chart of different types of peas –some of the many Pisum sativum cultivars; wild varieties like Pisum fulvum— would be useful for future pea Compendiums.

Field peas are traditional animal forages, also useful in cover crop mixes, rotations and as green mulches to build healthy soils (e.g. adding organic matter & legume nitrogen naturally fixed from the atmosphere by root-zone rhizobia). Fresh market peas, typically harvested for seeds and pods or tender leaf tips, include many heirloom varieties no longer listed in seed catalogs.

Fresh peas from the pod and edible-pod peas such as snow peas and sugar snaps are enjoying a renaissance. But the real staple in terms of acreage and international commerce are dried peas. High in protein and nutrients (some medicinal), dried peas include whole peas, split peas and ground pea flour. Worldwide 17.7 million tons of peas are grown for human and animal consumption on 9.2 million ha (22.7 million acres) of land, led by Canada, Russia, China, India, Ukraine, the USA, Australia, Ethiopia and Tanzania.

Many pea vine varieties are valued specifically for canning or freezing. “Clarence Birdseye, in the 1920s, after spending time in Canada with the native Intuit Eskimos, developed a method to flash freeze vegetables, thus providing fresh produce year-round for those consumers living far from production areas,” notes the Compendium. “Fortunately for him, peas just happen to be among the most effective vegetables for retaining natural flavor and color” when flash frozen. The Birds Eye label lives on in supermarket freezer sections.

“One of the eight Neolithic founder crops thought to be responsible for the origins of modern agriculture,” the pea “was first cultivated over 9,000 years ago,” and likely had had four diverse centers of origin, notes the Compendium introductory chapter, “Origin, Domestication, and History of Pea Production and Usage”. Carbonized remains from archaeological sites suggest “pea plants were domesticated in the Fertile Crescent of Southwest Asia, possibly northwestern India, Pakistan, or adjacent areas of the former Soviet Union and Afghanistan. Wild and primitive forms were found in ecologically diverse sites stretching from the Mediterranean region to Afghanistan and into the highlands of Ethiopia.”

From 1856 to 1863, eastern European monk/scientist Gregor Mendel utilized common garden peas, Pisum sativum, for the statistical inheritance experiments underlying modern genetics and breeding. Today’s plant breeders are studying the wild yellow pea, Pisum fulvum, which has scarlet flowers and good yields of red-yellow to black or brown seeds. Wild yellow peas grow wild in the eastern Mediterranean. Sixth and seventh millennium BC archaeological sites indicate it was eaten around what is now Turkey, Iraq and Israel. Pisum fulvum is a genetic source for breeding farm and garden peas with resistance to saline soils; fungal diseases such as Ascochyta blight, Fusarium wilts, pea rust and powdery mildew; and insect pests such as pea aphid and pea weevil.

Pisum fulvum also contains lectins (carbohydrate-binding proteins) that attack cancer cells, causing cell death (apoptosis). Similar compounds from cultivated Pisum sativum varieties also offer the potential advantage of fewer noxious side effects than current chemo-therapies. “In the last two decades, some plant lectins have been used to differentiate between malignant and benign tumours, and the degree of glycosylation was associated with the cancer metastasis; recently, the plant lectins have been developed in sophisticated microarrays for a better understanding of the malignant tumours, for diagnosis and identification of the different cancer developmental stages,” note Yassin et al. (Rev Chim-Bucharest, 2019).

Cultivated peas are classified as genus Pisum, species sativum. The word sativum refers to health-promoting or medicinal properties. “Pea seed is a rich source of high-quality protein; dietary fiber; low-fat, slowly digestible carbohydrates; minerals (iron, zinc, calcium, and magnesium); many vitamins (niacin, riboflavin, thiamine, B6, and folate); and a myriad of phytochemicals (e.g. polyphenols and saponins),” notes the APS pea Compendium. “Phytochemicals in pea have newly recognized health benefits and serve as antioxidants, anticarcinogens, and hypocholesterolemic agents. Galactose-oligosaccharides in pea promote gut health.”

“Pea seed protein concentration in cultivated pea ranges from 21 to 25%,” with 39.7% the upper limit known, says the Compendium. “Pea protein is rich in amino acids, lysine, and tryptophan but low in the sulfur-containing amino acids methionine and cysteine…Before 1700, it was unusual for peas to be consumed in any fashion other than as dried, mature seeds. The green immature cultivars were not developed for another 50-60 years by Knight. Since dry peas are difficult to completely cook without disintegration, the dried product was most often boiled for long periods until the starchy seeds fell apart, making a smooth but thick soup. Thus, pea soup was the standard method for use in the ancient world. This traditional practice provided a hearty, nutritious source of food during the winter months because the dried seeds stored so well…In Britain by the 1400s, it was one of the major crops grown and was so common that the words ‘pottage’ and ‘porridge’ meant peas. In fact, according to food historians, the English King John in the thirteenth century is thought to have died from overconsumption of peas with a reputed seven bowls at a single sitting.”

In randomized controlled experiments, pea fiber fights constipation. “Foods made with whole yellow pea flour reduced postprandial glucose responses in individuals and, thus, may have a role in the management of type 2 diabetes,” according to modern researchers. In Switzerland, cosmetic researchers are evaluating pea sprout extract topical applications and food supplements to stimulate hair growth and reduce hair loss. Another line of research is using antimicrobial phenolic extracts from sprouted peas to fight the microbe Helicobacter pylori (associated with gastric and duodenal ulcers) without the unwanted side-effects of conventional treatments. Early results indicate pea sprout extracts provide dose-dependent inhibition of H. Pylori, write Ho et al. in the Journal of Food Biochemistry (2006). Numerous scientific papers from around the world explore garden or field pea extracts and isolated compounds to combat human cancers.

It all starts in the soil, and the APS pea Compendium is especially strong when it comes to soil fungi (including oomycetes) attacking peas (e.g. root rots). Resistant varieties are a major bulwark against soil pathogens, but not always available. Oats or mustard family (Brassicaceae) plants planted prior to peas or as cover crops may help suppress pea root pathogens. Organic pea growers are exploring soil pathogen biological control with beneficial microbes such as Trichoderma, Pseudomonas, Streptomyces, and Bacillus spp. In small areas, seed priming is effective against damping-off diseases such as Pythium and Rhizoctonia.

HortScience (Nov. 2020) described intercropping organic snow peas and cherry tomatoes under polyethylene high tunnels. High tunnels have walls that can be rolled up or down to adjust the temperature, let in pollinators, exclude insects, etc. Sort of like a field greenhouse. Since snow peas are legumes supplying their own nitrogen and mature early, the Ontario, Canada organic grower, who prepared the soil with cover crops of buckwheat, sorghum and red clover, got good yields of both crops.

Greenhouses and high tunnels are growing in use, permitting crop production in seasons and climates otherwise adverse; also allowing early or later harvests when crops are in high demand and fetch good prices. Light reflected or filtered through greenhouse walls and supplemental lighting affect the light wavelengths & intensities reaching plants and arthropods. For example, ratios and intensities of red, blue, ultraviolet and other light wavelengths (colors) may affect and alter the survival, reproduction and growth of crop plants, plant pathogens, insects, spider mite and beneficial organisms. CABI recently published a whole book, based on an international symposium, discussing the manipulation of light for integrated pest management (IPM) of insects, spider mites and plant pathogens. Indeed, short bursts of selected light wavelengths are used in some commercial greenhouses to kill plant pathogens such as powdery mildew.

Beneficial soil microbes deserve more prominence in the Compendium, as they affect and can be part of pest management. Nitrogen-fixing bacteria (e.g. family Rhizobiaceae) colonizing the roots of peas and other legumes are famous for naturally supplying nitrogen, an often expensive fertilizer commodity. Nitrogen-fixing and Plant Growth Promoting Bacteria (PGPB) may be thought of as “beneficial root infections” or “good plant diseases”. Commercial growers, led by those practicing organic methods, are at the leading edge using PGPBs and microbial biofertilizers which may also provide biological control of plant pathogens and soil nematodes.

Some PGPBs supply plant growth hormones and increase the solubility and availability of soil phosphorous. Ranked #2 to nitrogen in crop growth importance and deficient in 40% of world soils, soil phosphorus often requires microbial actions (e.g. the symbiotic association of plant roots with arbuscular mycorrhizal fungi) to become available to plants. Bødker et al. (1998) showed that microbes associated with pea roots –specifically the arbuscular mycorrhizal fungus (AMF), Glomus intraradices— and inorganic phosphate result in lower levels of pea root diseases such as Aphanomyces euteiches.

AMF modes of action include inducing systemic resistance to plant pathogens in pea seedlings. Thus, future Compendium editions would benefit having a section on these beneficial soil microbes, similar to the excellent section on beneficial insects providing biological control of pea insect pests. To that insect gallery, I would add pea leafminers and beneficial predatory ground beetles and tiger beetles whose numbers are boosted when grains or cereals are part of the cropping mix.

Suppressive soils that stop soilborne plant pathogens and nematodes need more research, and would make a good chapter or subheading. Naturally suppressive soils are not uncommon. Heyman et al. (2007) demonstrated experimentally that calcium soil amendments help create soils naturally suppressive to Aphanomyces root rot of pea. In greenhouse experiments, Williams-Woodward et al. (2020) noted that the oat cultivar ‘Troy’ turned into soils as a green manure provided better pea root rot control than a fallow period. Mustards, cabbage, rape and similar Cruciferous crops contain glucosinolates (mustard gas chemicals) suppressing soil pests. In Columbia, South America soils, a Trichoderma biocontrol microbe made soils suppressive to Rhizoctonia root rot of peas and other crops (Chet & Baker, 1981).

Interestingly, in greenhouse experiments pea seed powder acts as a botanical herbicide, and suppresses broadleaf weeds and grassy weeds in wheat. There are also scientific reports of pea root-zone (allelopathic) chemicals suppressing weeds in cereal grains and other crops. There are also reports that peas secrete root chemicals suppressing subsequent pea crops. The Compendium mentions peas as a rotation crop for cereals like wheat, corn, millet and barley.

For those interested in companion planting: Cucumber and carrot seed extracts have a positive effect on pea seedling growth; onion and garlic seed extracts negatively impact pea seedling growth. In the 1930s, a Tennessee entomologist named Marcovitch designed one of the early modern scientific farm companion planting experiments. Turnip strips were planted adjacent to strips of peas and other crops in March. Lady beetles, small parasitic wasps and other natural enemies migrated from the turnips to destroy early-season aphid populations in adjacent rows of peas, beans, corn, okra, cotton, cucumbers and watermelons. Watermelons far from turnip rows were destroyed by early season aphids.

Although peas have been cultivated for thousands of years, we do not have a definitive scientific answer to whether we can plant peas over and over again on the same ground. Clearly, plant pathologists can play a role in answering the question. If peas are anything like wheat, carnations and other crops, then growing them continuously in the same soil might lead to the buildup of biological control organisms (e.g. Trichoderma spp.) that make soils naturally suppressive or resistant to soil pathogens. Or if peas are different, knowing why some plants grown successively year after year cannot produce suppressive soils would be a valuable research outcome.


Plant Disease Pandemics + Cucumber Mosaic Virus (CMV)

June 28, 2020

HALF A CENTURY AGO, when polio and cancer were bigger concerns than coronavirus, a German plant disease specialist named M. Klinkowski (not revealing his first name, as was the scientific publishing custom of the time) authored an article titled Catastrophic Plant Diseases. “Many plant disease agents cause epidemics and pandemics,” and “these events often have had disastrous consequences,” wrote Klinkowski. “And the end is not in sight. In our time, nearly every country in the world is threatened by exotic plant diseases, especially because of greatly expanded international travel.”

Weedy invasive plants, higher animals of all sorts, microbes and disease pathogens, insects, arthropods and other life forms have been spread worldwide, both intentionally and unintentionally, East-West, North-South, Old World/New World with faster and expanded international trade routes and travel. Animals, plants and their associated microbes shifted around geographically even before humans inhabited the Earth. But at a slower pace associated with climate changes and tectonic plate movements measured in thousands to hundreds of million years.

Few pandemics aside from the medieval black plague and wars have been as devastating as Ireland’s 1840s encounter with potato late blight, a fungal plant disease. The blight pathogen rapidly develops pesticide resistance, and pandemics still devastate potato and tomato fields worldwide. Even with disease-resistant potato varieties and billions of dollars annually in fungicide sprays, damage to potato, the world’s third largest food crop, exceeds $6 billion per year. 1840s Ireland, population ~8 million, suffered famine, over 1 million deaths and migration of over 1 million during the great potato blight. Ireland’s 2020 population remains below 1840s pre-pandemic levels. Compare Ireland’s plight to 100,000+ coronavirus deaths in a USA population of 331 million. A USA disease pandemic equivalent to potato blight in Ireland would mean a USA population loss of roughly 75 million.

Most plant disease pandemics have vanished from popular memory and history, though many were headline news events in their day. For example, the long-forgotten peach yellow virus “left gloom and bankruptcy or near bankruptcy among the farms and villages in its wake” across the agrarian USA during outbreaks in 1806-07, 1817-21, 1845-58, 1874-78, 1886-88 and 1920. Rye ergot pandemics, usually localized, are best remembered for triggering literal witch hunts and burnings, and hallucinogenic visions known as the holy fires of St. Anthony.

Fast forward to the present day. USA plant disease scientists have their own organization, the American Phytopathological Society (APS) based in St. Paul, Minnesota. Similar organizations exist elsewhere in the world. Mostly, plant pathologists toil away in blessed obscurity without harsh media spotlights. Though they still fight new strains of potato blight and other food supply pathogens such as Cucumber Mosaic Virus (CMV).

Outside of the agriculture community/industry and some medical, biology and virology research laboratories, the recent 380-page APS book titled “Cucumber Mosaic Virus will likely be so far below the media radar as to be invisible. Those having a “need-to-know” about Cucumber Mosaic Virus (CMV) include: farmers; gardeners; pest and landscape managers; seed growers, as CMV is passed to new plant generations via seed; microbiologists; entomologists, as CMV is an aphid-transmitted virus. Also ecologists, as CMV infects wild plants like the milkweeds hosting monarch butterflies.

Clicking this link provides free access to the Table of Contents and chapter abstracts of the APS “Cucumber Mosaic Virus” book. Since CMV is capable of causing global food supply pandemics, the over two dozen book chapters include authors from the USA, UK, Japan, Greece, Italy, South Korea, Spain, Burkina Faso and France. Book co-editor Peter Palukaitis of South Korea’s Seoul Women’s University, currently a Cornell adjunct professor, has a range of research interests including “exploitation of several viruses for biotechnological applications.” Co-editor Fernando García-Arenal of Universidad Politécnica de Madrid (UPM) heads a lab group in Spain that “focuses on understanding the emergence of new viral diseases,” a hot topic since the sudden emergence of coronavirus. García-Arenal is interviewed (click link) on Pennsylvania State University’s web site by Penn State research technologist and book chapter co-author Rimnoma Serge Ouédraogo.

CMV is “a generalist parasite with a broad host range,” infecting 1,200+ plant species in 100+ plant families. Often unnoticed until long after a feeding aphid injects the virus, CMV infects a long list of food plants, ornamentals, herbs and woody plants, including: tomato, asters, spinach, soybeans, peppers, peas, beans, basil, celery, grapes, lupins, cantaloupe, watermelon, banana, pumpkin, pyrethrum, sweet potato, sesame, sunflower, zinnias, mints, lavender, alfalfa, lentil, cowpea, clovers and lettuce. Seed catalogs often carry CMV-resistant varieties, but an Integrated Pest Management (IPM) approach with multiple control tactics is needed. Pesticides often worsen the problem, as erratically-flying aphids crazed by neurotoxins get revenge by injecting plants with the gene-silencing CMV virus before succumbing.

Chapter 9 of the APS “Cucumber Mosaic Virus” book provides a broad overview of virus control strategies. Chapter 8, “Cross-Protection” by Minoru Takeshita of Japan’s Tohuru University, discusses vaccinating plants “with mild, protective strains of CMV.” The APS web site provides a free article on CMV (click link) where Cornell’s Thomas Zitter and Auburn’s John Murphy discuss CMV science and practical remedies: e.g. “Isolation of crop fields by growing taller, nonsusceptible barrier crops such as corn, may delay initial infections.”

Virus transmission is highest early in the season when infectious winged aphids are migrating and young plants are most susceptible to CMV. Thus, a good IPM strategy is early-season protection of young plants from aphids carrying the virus. Cantaloupes and melons grown under early-season floating row covers (e.g. Remay) to exclude migrating aphids have less CMV infection. As crops mature and become less vulnerable to infection, row covers can be safety removed to allow bee pollination. Mineral oil sprays can delay CMV infection for vital weeks of early plant growth in dense foliar crops like tomatoes and peppers, but are less effective in melons and vining crops. Commercially-available rhizobacteria (root-colonizing bacteria) confer at least partial resistance or immunity to a broad range of pests.

With its “unusual capacity for evolutionary change,” CMV is also a “model system” for scientific study of virus evolution, a topic of practical importance, as both CMV and coronavirus are single-stranded RNA viruses capable of causing global pandemics. Pennsylvania State University researchers Rimnoma Serge Ouédraogo and Marilyn Roossinck address CMV evolution in “Cucumber Mosaic Virus” book chapter 18, noting that CMV “has a high potential for population diversity due to error-prone replication and short generation times.” The “genome organization of CMV” also “makes it a good model for basic studies in virus evolution.”

Decades of genetic technology advancements expertly summarized in the APS “Cucumber Mosaic Virus” book make possible a whole book on CMV. First described in 1916, CMV was called “a conceptual construct or abstract concept, not a real object.” Indeed, through the mid-20th century the existence of many viruses was widely doubted, most notably ultra-small viruses called phages, which went undetected because they permeated the finest filters. Also known as bacteriophages, some phages provide biological control of bacteria causing diseases such as cholera. Until the invention of electron microscopes provided visual proof, Nobel Prize-winning immunologists doubted the existence of phage viruses. Natural body metabolic processes were believed responsible for the healing and disease biocontrol provided by phages.

Physics Nobel Prize winner Albert Einstein of general relativity fame found the highly mathematical abstract evidence for the existence of the small viruses conclusive. But the anti-phage expert opinion of the medical establishment and immunologists prevailed, fueled in part by fraudulent “snake oil” style medical marketing campaigns for phage viruses. A 1930’s American Medical Association (AMA) report effectively stigmatized the founders of modern molecular biology (phage believers) and eliminated most medical research funding for the past nine decades. The consequences are experienced today as an absence of phage remedies against antibiotic-resistant disease bacteria, outside of a few Eastern Europe countries and former Soviet republics.

Another conceptual physicist undeterred by lack of physical proof, Max Delbruck, won a Nobel Prize for using phage viruses as model experimental organisms. This during a time when the small viruses were still deemed figments of the imagination by immunologists and medical authorities. Delbruck’s virus experiments are now considered a cornerstone of modern molecular biology and have advanced medicine and genetics. While the benefits of CMV basic research are unpredictable, symbiotic and pest control benefits are worth pursuing. For example, IPM programs might eventually harness the ability of plant viruses to reduce the lifespan and fecundity of insect pests.

CMV remains somewhat mysterious. More understanding has yielded more puzzles to solve. Such is the nature of science. The APS “Cucumber Mosaic Virus” book should be commended for including the original 1916 research papers reporting the discovery of CMV. Too often these historical foundation documents are neglected, being primitive and ambiguous in comparison to the latest high-tech science. But these are the roots of science.

The APS book also has an interesting 63-page appendix referencing every known CMV host plant from Acanthus mollis (bear’s breeches) to Zingiber officinale (ginger). The host plant list includes the scientific names of many well-known herbs and flowers: e.g. alliums, amaryllis, anise, asters, borage, celosia, chrysanthemum, cyclamen, dill, fennel, fuchsia, ice plant, morning glory, narcissus, passion flower, vanilla and violets. The long list will no doubt continue to expand over time.

Plant viruses ingested along with food plant products are also common in the human gut, where they may impact the immune system and might even be essential physiologically. When Colson et al. (2010) examined stools, they found Pepper mild mottle virus (PMMoV) was common in the human gut, probably from eating pepper products. “Oral administration of Cowpea severe mosaic virus, another plant virus, has been previously shown to induce a durable and systemic immune response in mice,” wrote Colson et al. “Similar results have been observed in mice using Alfalfa mosaic virus and chimeric plant virus particles…moreover, it has been shown recently that Tomato spotted wilt virus could replicate in two human cell lines.” This intersection of plant pathology and medicine is still in its experimental infancy, terra incognita.

Plant viruses sometimes switch hosts, and might even hybridize with animal viruses. Mark Gibbs and Georg Weiller (1999) reported in the Proceedings of the National Academy of Sciences a DNA virus from plants that likely switched to an animal host. From there, the plant DNA virus likely recombined with an animal RNA virus to form a completely new virus. Possibly a rare event occurring in the distant past and still speculative, the paper is nonetheless cited because virus host switching and interspecies virus recombination may have implications for disease severity (e.g. coronavirus).

CMV has intriguing similarities to certain animal-infecting viruses. Marilyn Roossinck, one of the contributors to the APS “Cucumber Mosaic Virus” book, previously noted that thrips-vectored tospoviruses and geminiviruses infecting plants “appear to have recently evolved from an animal Bunyavirus.” In the 1997 Annual Review of Phytopathology, Roossinck wrote: “The relationships between some plant and animal viruses suggests a common origin, possibly an insect virus. The propensity for rapid adaptation makes tracing the evolutionary history of viruses difficult, and long term control of virus disease nearly impossible.”

The practical importance of virus research makes the APS “Cucumber Mosaic Virus” book worth considering for research library shelves in agriculture, plant pathology, entomology, medicine, microbiology, molecular biology, virology, etc.


Illustrated Generic Names of Fungi (An Ode to Fungi)

February 19, 2020

ILLUSTRATED GENERIC NAMES of Fungi, a 451-page book with over 1,000 original watercolors of Fungi life stages (many viewed under the microscope), “created with passion and fervor by Miguel Ulloa,” would be at home in natural history and art museum bookstores/gift shops. “Not only do these illustrations give the book a sense of artistic value, but they also serve to distinguish it from the usual mycology texts,” write Mexico City-based authors Miguel Ulloa and Elvira Aguirre-Acosta, who hope the book “will be well received and useful to students of this fascinating group of organisms.”

Though a good reference volume for science libraries, artists will be inspired by the otherworldly beauty and structural diversity found within the biological kingdoms Fungi, Chromista and Protozoa. The latter two kingdoms having until recently been considered Fungi. The book is published by the St. Paul, Minnesota-based American Phytopathological Society (APS), a scientific society, many of whose members focus on preventing plant diseases (some caused by Fungi) of agricultural importance from negatively impacting world food supplies. The text and watercolors portray 1,592 of the 8,000+ known Fungi genera. Over a million Fungi species are known, and just mentioning them all by name would be an encyclopedic endeavor. But in the age of Internet collaborations, we may yet get there.

“The 1,592 generic names of these 3 kingdoms (Fungi, Chromista, Protozoa) are arranged alphabetically,” and “the genera included are from all over the world, describing fungal diversity from 5 continents,” write the authors. “Brief diagnostic morphological characteristics of each genus are presented. These descriptions also mention the ecology and mode of nutrition of each species of each genus as parasites on organisms ranging from protozoa to vertebrate hosts, including human mycoses caused by fungi, and symbionts with insects and many groups of arthropod hosts, as well as those fungi associated with plants (decomposers, mycorrhizae, and pathogens).”

“An important aspect of the content of this book is etymology, which is the study of the origins and meanings of words,” say the authors. “For the generic names of fungi, the etymology rests on knowledge of the origins, structures and transformations of words. The etymological meaning of any word is an essential part of linguistics —indispensable to speaking and writing with the accuracy, clarity, precision, and elegance that distinguishes academic and scientific language. The technical and scientific vocabulary are derived from ancient words, mainly Greek and Latin, from which innumerable words or neologisms have been derived.”

For example, a Fungi genus found on mossy soils, trees and old wood is named Cora, from the Greek word kόre for “pupil of the eye, young, virgin, beautiful woman, maiden, doll, for the colorful reniform, circular or semicircular thallus…of loosely interwoven hyphae that extend over substrate…to form a delicate pileus.” Additional sources (e.g. botanical dictionaries, Google) will likely be necessary to lookup mycological terms such as pileus (Latin for cap) and thallus (Latinized Greek, referring to twig-like undifferentiated vegetative tissue).

The well-known genus Aspergillus is the combination of Latin words for rough (asper) and the vessel used for sprinkling holy water (gillo), which is what the fungal conidial head resembles under the microscope (vividly shown in Ulloa’s watercolors). Penicillium refers to Latin diminutives for the brush (penicillus) or feather-duster appearance of conidiophores magnified 1,500 times under the microscope.

Etymology also provides “a powerful aid to memory to more easily recall the meaning of a word.” In past eras, write Ulloa and Aguirre-Acosta, “it was a little more common for authors to follow the norm of explaining the origin of scientific names used, including genera and species, a norm that unfortunately very few follow at present. The present work is intended to make up for these types of omissions and contribute to filling a void.”

Plant pathologists focus on Fungi and microbes because of their association with epidemics and famines like the potato blight that ravaged 19th century Ireland. Rusts, smuts, bunts, ergots and other Fungi have infested grain crops since ancient times, and still threaten world food supplies. The Fungi genus Claviceps includes ergots infecting wheat and rye. Clavus is Latin for walking stick or nail; ceps is Neo-Latin “derived from Latin caput, capitis, head, for the club shape of the ascocarps.”

Ergot-contaminated rye flour baked into bread caused epidemic ergotism, mass poisonings known in medieval times as St. Anthony’s fire. The “holy fire” could generate intense body heat and consume whole bodies, leaving behind only charred limbs. Ergot alkaloids cause widely varying symptoms: lethal gangrene (from blood vessel constriction), painful muscle convulsions, seizures, coma, dementia and visions. Sometimes “holy” and sometimes horrific, these visions ranged from shining bright colors and spatial shifts to scream-inducing hallucinations. Symptoms could last for days, weeks, months or years, when not quickly lethal. Ergotism was dubbed Kriebelkrankheit in Germany because it felt like insects crawling under the skin.

Ergot poisonings, sometimes blamed on witchcraft, were the basis of Scandinavian witch trials right up to modern times. Some “witches” admitted intentionally poisoning food with the black rye ergot in acts of vengeance against their enemies. Fungal ergots also became the basis of crude, sometimes deadly medieval medicines used by midwives and physicians for “quickening” childbirth. Modern medicine uses ergot alkaloid derivatives similar to those causing gangrene to constrict blood vessels and relieve migraine headaches.

Plenty of practical reasons for studying Fungi to make life on planet Earth more pleasant, including self-healing concrete; and a caterpillar fungus called Cordyceps used in Chinese medicine, which could be particularly useful for certain brain strokes where modern medicine lacks effective drugs and treatments. Just as botulism toxin was modified into a best-selling pharmaceutical, researchers study Fungi poisons and bioactive compounds as sources of antibiotic, antioxidative, antitumor, immunosuppressive and other products potentially useful in agriculture and medicine. Fungi biochemicals can also be fermented for industrial use.

“Few fungi have had as broad an economic impact as Aspergillus flavus,” because “the fungus will grow and produce aflatoxin in almost any stored crop seed,” wrote USDA-ARS researcher Maren Klich (2007) in the journal Molecular Plant Pathology. Aspergillus species produce aflatoxins, whose poisonous and carcinogenic presence is monitored and limited to a few parts per billion in human, animal and pet foods worldwide. Epidemics from contaminated pet food have killed animals in kennels. Consumers of contaminated corn have been killed in Africa. Honeybees infected with Aspergillus suffer from a disease called stonebrood.

In the USA, the estimated economic cost of mycotoxins is at least a billion dollars annually; and near $100 million for California almonds and walnuts. “In the field, aflatoxin is associated with drought-stressed oilseed crops including maize, peanut, cottonseed and tree nuts. Under the right conditions, the fungus will grow and produce aflatoxin in almost any stored crop seed,” said Klich. “As human pathogens, Aspergillus species have become increasingly important because immunosuppressed people are very susceptible to infection,” and “A. flavus is also an allergen causing allergic bronchopulmonary aspergillosis.”

“Interestingly, the one cooking process that does drastically reduce aflatoxin is the nixtamalization process (soaking and cooking of maize in an alkaline solution) used in making tortillas,” said Klich. “Thousands of papers have been written on Aspergillus flavus and aflatoxins, so a complete review of the literature is not possible.”

Breads, cheeses, wines, beers, yoghurt, sake, tofu, miso, tempe, soy sauces, numerous biological pest controls and medicines are among the many beneficial Fungi products mostly taken for granted without thinking of their microbial origins. Fungi can also be useful for environmental remediation. Every year 500 million to 1 trillion polyethylene plastic bags are used worldwide, and fungi can be part of recycling solutions. In India, two common fungi, Mucor circinilloides and Aspergillus flavus, were found biodegrading polyethylene shopping bags in landfills; micro-algae degraded discarded plastic bags in shallow suburban waters.

Fungi in the genera Penicillium, grown industrially to produce the antibiotic penicillin and ripen blue cheeses, also produce enzymes biodegrading plastics. One idea is industrial-scale bio-factories where multiple organisms decompose plastics into simpler compounds such as carbon dioxide, an overly maligned and demonized minor atmospheric gas essential to photosynthesis, plant growth and animal life on planet Earth.

Fungi survive in some of Earth’s harshest environments, such as South America’s Desierto de Atacama or Atacama Desert. The remarkable survival skills of Fungi even extend into outer space. Scientists periodically revisit speculations that Fungi existed on other planets, such as Mars in its early phases, or were introduced to planet Earth from regions unknown. The Illustrated Generic Names of Fungi devotes 2 pages and 6 watercolors to Aspergillus, which are among the Fungi whose life stages can survive up to 6 years of the low temperatures, vacuums and irradiation typical of outer space.

Aspergillus and Penicillium are also among the Fungi identified living on the surfaces of spacecraft and the International Space Station. “Exteriors of human and robotic space vehicles are inhabited by millions of microbial cells, many of which are carried as spores that are highly resistant to the adverse environmental effect,” wrote Novikova et al. (2015). “One of the crucial challenges of space exploration is planetary quarantine or how it can be ensured.” Though at various times scientists, including Francis Crick who shared the Nobel Prize for identifying the structure of DNA, have suggested the reverse, that microbial life traveled through outer space and colonized planet Earth.

Back on planet Earth, May and Adams (1997) estimated that Aspergillus Fungi had a $45 billion dollar positive impact on the USA economy from large-scale production of citric acid and industrial enzymes such as amylases, proteases and lipases. There are over a million filamentous Fungi species. But “no governmental agency, except the USDA, has acknowledged the relative importance of filamentous fungi to the health of the general population and their importance to our national economy, let alone to the global economy,” wrote May and Adams. “This group of organisms is likely to tell us much about ourselves and how cells have solved many fundamental problems in biology.”

Enjoy the Illustrated Generic Names of Fungi for its unique combination of beautiful watercolors combined with Etymology. It is like an illuminated manuscript, a window hinting at an underlying fungal reality dwarfing imaginations. A good springboard for delving deeper into the Fungi.


Pests and Their Management

May 19, 2019

WEIGHING IN AT 1,078 pages and 27 chapters in hardcover, Springer’s Pests and Their Management was heavyweight champion in the book exhibits in Vancouver, Canada at the joint Annual Meeting of the Entomological Societies of America (ESA), Canada (ESC) and British Columbia (ESBC). Edited by Professor Omkar of the University of Lucknow’s Ladybird Research Laboratory in Uttar Pradesh, India, the 27 chapters range from major world commodities such as rice, wheat, maize, pulses, oilseeds, cotton, soybeans, sugarcane and stored grains to vegetables, fruits (banana, apple, mango, citrus, jackfruit, guava, grapes), medicinal crops (walnuts, seed spices, aromatics, Indian tea) and plagues of locusts, aphids, termites and rodents. Plus a final chapter on control methods. Persons sourcing crops internationally, concerned with agriculture sustainability, and having computer access to university and research libraries may want to add chapters to their digital devices. Digital downloads total almost 17,000, according to Bookmetrix stats on the Springer site. Libraries interested in crops and agriculture will want the hardcover version for their reference shelves.

Insects and plants originated on planet Earth 480 million years ago, but only within the past 12,000 years when humans adopted monoculture farming (large expanses planted exclusively to one crop such as wheat, barley, rye) did crop insect problems come to the fore. Only a miniscule number of Earth’s millions of insect species (estimates range as high as 30 million, many yet to be described and named) are detrimental. But “often only one, two or three (pest insect species) on a plant species can destroy a crop or cause sufficient damage,” writes Professor Omkar. “Globally, an average of 35% of potential crop yield is lost to preharvest pests.” Although crop losses in India “have declined from 23.3% in post-green revolution era to 15.7% at present,” the annual loss of US$36 billion dollars “is a major dent to the economy.”

Global trade routes and human movements have helped previously isolated regional or local pest species spread and evolve into the global insect pests featured in Springer’s compendium, though it is more fashionable and politically correct to carp about climate fluctuations. “Another cause for increased spread and incidence of crop pests is the large monocultures that have replaced the natural diversity-rich ecosystems,” writes Omkar. “Unabashed use of pesticides has led to pest resurgence of old as well as new species, owing to pesticide resistance as well as removal of natural enemies from the ecosystem due to the use of broad spectrum insecticides.” Indeed, “the intensity of crop protection has increased considerably as exemplified by a 15-20-fold increase in the amount of pesticide used worldwide.”

“To provide targeted, cost-effective, ecofriendly management of insect populations to the end user, it is essential for us as students, teachers, researchers and scientists to be aware of the potential pests that target our crops, the ways in which they damage them, and the various control measures available to us,” says Omkar. “The upcoming chapters deal with the diagnostic features, life cycle, damaging stage, mode of damage and control measures of pests of various agricultural and horticultural crops, including some rarely dealt with crops such as tea, seed spices, walnut, medicinal and aromatic plants, etc.”

Wisely, the tea chapter restricted itself to India. At the Vancouver entomology conference I had the chance to listen to Eric Scott of Tufts University in Massachusetts talk about his experiences (see blog links) with premium-priced “bug-bitten” Chinese teas. Oddly enough, tea green leafhopper (Empoasca onukii), a major pest often sprayed with pesticides, improves the quality of certain Chinese black (fermented) teas marketed with names such as Concubine Wulong, Honey-Aroma and Eastern Beauty Oolong. Though tea leafhoppers reduce yields up to 20% and are bad for most green teas, leaves of certain varieties fermented into black teas have a better blend or ratio of volatile flavor and aroma compounds for which Chinese consumers will pay premium prices. Plants with bug-bitten tea leaves are also favorable for natural pest management, being higher in polyphenols, caffeine, L-theanine and compounds that kill microbial pathogens and attract spiders and other insect natural enemies.

Chinese farmers and tea plantation managers who welcome tea leafhoppers as harbingers of much higher quality, higher-priced “bug-bitten” fermented black teas are learning to manage leafhopper populations for optimum size. The idea is to create tea plantations where leafhopper levels are neither too low nor too high, but rather just right to produce the highest economic yield of bug-bitten leaves, versus the traditional pesticide eradication paradigm where damaged tea leaves go unharvested.

With 9 to 15 leafhopper generations per year in Taiwan and mainland China and different tea plant varieties or genotypes responding differently to leafhoppers, as well as climate, altitude, leaf age and other factors in play, pest management is not easy (yield losses must be weighed against premium prices for damaged leaves). Lessons from managing leafhoppers in grapes are being applied to managing leafhoppers in tea: Namely, pest managers wear inexpensive orange goggles and shine blue LED flashlights to count leafhopper eggs, which fluoresce as green points inside stems. Indeed, monitoring populations of pests and beneficials is the key to success, along with having an open mind.


Untold Stories, Beyond Methyl Bromide

January 17, 2018

“THE IDEA TO write this book came to me after I retired in 2005 and was cleaning out, re-reading, and reorganizing 40 years of files…in spite of three books and more than 200 journal publications and book chapters, my files filled with history and unpublished data were headed for the trash bin…the greater my urge to somehow pull the stories together into a single read-through description of my career…unique, it is the approach I took and the philosophy behind my approach to do hypothesis-driven research starting in the field, followed by the laboratory,” writes R. James Cook in the “Preface” to his book, Untold Stories (APS Press, 2017).

In 1974, Cook and Kenneth F. Baker co-authored a landmark book, Biological Control of Plant Pathogens. That book, which in some ways is a precursor to Untold Stories, summarized scientific evidence relevant to creating ecological balances favoring beneficial organisms (e.g. biocontrol agents, antagonists, competitors) as pesticide alternatives to control pathogens capable of weakening and destroying plants, including major food crops such as potato and wheat. Human medicine has at various times in various places employed a similar biological approach, such as using bacteriophages to fight diseases such as cholera, but for an array of reasons biological control has found more fertile ground in agriculture. Ecological balances can be tilted or nudged from pathogens to beneficial organisms in various ways, including via soil pH adjustments, tillage systems, cropping sequences, fallows, composts, amendments, nutrients, etc. The specifics can vary widely among crops, individual fields, regions, soil types, etc. Dr. Cook, as the Untold Stories subtitle, “Forty Years of Field Research on Root Diseases of Wheat,” hints, found wheat a fertile microcosm for exploring the phenomena of naturally disease suppressive soils for producing healthy crops.

Cook’s job when he joined the USDA Agricultural Research Service included soil diseases afflicting wheat, one of humanity’s most ancient crops and a worldwide dietary staple. The USA grew 45.7 million acres of wheat in 2017, most of it winter planted varieties, the lowest acreage since record keeping began in 1919. USA farmers grow twice as much corn and soybean, roughly 90 million acres of each. Wheat exports earn the USA roughly $6 billion a year, out of $140 billion in total agricultural exports. Though wheat helps the USA balance of trade, family farms growing wheat are not sustainable or economically viable if soil pesticides are used. Dr. Cook’s challenge was curing wheat soil diseases without costly pesticides. In the 1970s, the mainstream view was that solving pest problems without pesticides was drug-induced organic hippie crazy talk, a near impossible task with low probability of success.

Fortunately Dr. Cook possessed sound inner instincts complemented by scientific understanding of ecology and microbiology, with an emphasis on biological control of plant diseases absorbed working alongside Kenneth Baker and others at the University of California, Berkeley where biological control was still honored and respected despite falling from its early 20th century heights during the synthetic pesticide era. Cook briefly acknowledges Louis Pasteur, the famous French freelance microbiologist, chemist and entomologist who developed modern medical germ theory and laid the foundations for modern epidemiology while alleviating a mysterious silkworm colony collapse (disease epidemic) depressing the mid-19th century French economy.

On page 236 of Untold Stories, Cook quotes Pasteur: “In the field of observation, chance favors the prepared mind.” I would go back one step more to Pasteur’s mentor, chemist Jean Baptiste Dumas, who according to French-borne microbiologist René Dubos, persuaded a reluctant Pasteur to tackle the silkworm problem despite an insect ignorance for which he was widely ridiculed: “To Pasteur’s remark that he was totally unfamiliar with the subject, Dumas had replied one day: ‘So much the better! For ideas, you will have only those which shall come to you as a result of your observations!’” Microbiologist Alexander Fleming, famous for the fungal antibiotic penicillin, noted another important factor: “Louis Pasteur in his youth and throughout his life believed in hard work. He lived for his work and put his whole heart and soul into it. His was not a 40-hour week. He worked so constantly in his laboratory that it was inevitable that he became a beautiful technician…”

Another message embedded in Cook’s Untold Stories: Successfully tackle hard problems that appear insoluble to everyone else, and the probability of job security and life success increase. Cook developed an expertise in finding cooperative wheat farmers and locating fields where natural biological controls seemed to be working on their own. Then did a laboratory form of reverse ecological process engineering to find out why these fields developed a disease immunity or natural suppression of wheat soil pathogens. When you can replicate or duplicate the phenomena experimentally, then a degree of understanding can be claimed.

 

Untold Stories feels like the real nitty-gritty, with behind-the-scenes stories about how research projects are accomplished. The type of details typically omitted from science journals, by design. If anyone dared put into their journal article the details of how they obtained funding, navigated the bureaucracy to win support, or cleverly acquired a piece of new equipment, it would no doubt get edited out. This is a reason Roald Hoffmann in his book, The Philosophy, Art, and Science of Chemistry (Oxford University Press, 2012), suggested a new kind of science journal allowing first person “voice” and personal experience. Actually, it would only be “new” in the “retro” sense that “everything old is new again.” In the early days of modern science, personal autobiographical expression, musings and miscellany were common. These early science articles could be confusingly messy and hard to decipher, perhaps harking back to the deliberately obscure days of alchemy. However, personal observation and experience was handled well by agricultural researchers in the early 20th century. Which is not meant to denigrate the utility and immense value of standardized journal formats with introduction, methodology, results, discussion, etc. There is room in the world for both.

Untold Stories embeds science in a wider human context, beyond what is possible in the modern journal format, which necessarily excludes the human dimension, but leaves behind an unintended residue, a subjective impression of a science rendered lifeless by the invisibility of its practitioners. Cook family members pitched in to write the forward, edit, design and deliver their father’s book ready for printing by the American Phytopathological Society (APS) Press. Cook’s attitude towards public service is refreshing, and clearly extended into his so-called retirement. Judging from the 2005 start date and the 2017 book publication date, Dr. Cook put over a decade into this “Magnum Opus” book project. Wife and family were promised this would absolutely be his last book. One might lament, but I have to believe Dr. Cook mined his past experiences so thoroughly as to be able to rest on his laurels and not feel that much was left out that could not be remedied in a few journal articles.

A mathematical ratio of untold stories to published stories would be interesting, and Dr. Cook is in a position to be the expert. Let’s say the Untold Stories:Published Stories ratio was 1:1 and had a certain “volume.” Then the “volume” (e.g. measured in pages, articles/books, person-years of work, or whatever) of untold stories could be multiplied by the number of scientists or the amount published in a given time period to yield an estimate of how much scientific research ends up in the proverbial trash bin.

The Untold Stories photo caption on page 52 brought to mind a much maligned molecule, methyl bromide, a research tool and experimental control integral to scientific investigation of naturally disease suppressive wheat soils. Salt marsh microbes naturally produce methyl bromide as an antibiotic type weapon in waging ecological warfare for survival against competitors and antagonists. The caption: “A discussion session in progress at a Pacific Coast Research Conference on Soil Fungi with Professor S.D. Garrett, Cambridge University, as the discussion leader…Steve Wilhelm from UC Berkeley, credited with the introduction of soil fumigation to the California strawberry industry, is in the front row…”

Dr. Wilhelm, who I knew to also be interested in promising methyl bromide alternatives such as steam, marigold cover crops and green manures, crops up again on page 186 of Cook’s book: “it was not until the middle of the twentieth century that soil fumigation was used on a large scale…Steve Wilhelm at UC Berkeley…together with Albert Paulus at UC Riverside, did the pioneering work on the use of mixtures of chloropicrin and methyl bromide to control soil-borne pathogens and weeds before planting strawberries in California starting in the late 1950s. Strawberry yields were roughly 5 tons per acre in fields not fumigated and up to 25 tons per acre in fields that were fumigated.”

Soil fumigation with methyl bromide and chloropicrin worked so well that California had near zero untreated strawberry fields available to investigate for naturally suppressive soils, which is unfortunate, as methyl bromide use is being phased out under the Montreal Protocol as an ozone depleting substance. Something I learned about in more depth working with the late Jamie Liebman, a plant pathologist at BIRC (Bio-Integral Research Center), where as subcontractors we helped develop a Montreal Protocol methyl bromide alternative research agenda for funding by the U.S. EPA and United Nations. I wrote a short chapter on this period in history titled “Rowland’s Recipe for Climate Treaty Success” in an ABC-CLIO book titled Science and Political Controversy, edited by David E. Newton in 2014. In 2015, attending agricultural, soil and entomological science meetings in Minneapolis, not far from APS headquarters, I was pleased to find that research agenda still extant and going deeper. Funny what a mere photo caption can trigger in human memory. No doubt Untold Stories will have similar effects on readers whose interests and paths intersected with those of Dr. Cook.

California’s $2 billion strawberry industry, which produces about 90% of the USA crop, an awesome 1.7 billion pounds on about 40,000 acres (43,000 pounds of strawberries per acre), was for all practical purposes birthed into existence by injecting chloropicrin and methyl bromide into soils under plastic tarps. California’s hyper-productive strawberry growers, like Florida tomato and inland Pacific Northwest potato growers, can earn back methyl bromide soil fumigation costs. Family wheat farms would be bankrupted and abandoned to tumbleweed and erosion by soil fumigation costs. Scientifically, the less prosperous economics of wheat growing were fortuitous, as Dr. Cook was precluded from earning a living testing and recommending soil pesticides. Instead, as Dr. Cook’s book rigorously details, applied science became indistinguishable from pure science (much as it did for Pasteur) as it delved into the microbiology, ecology and non-chemical remedies for soil pathogens causing unhealthy plants and crop failures.

A key scientific discovery was that growing wheat in the same field again and again, year after year without interruption or rotation, can result in soils becoming naturally suppressive or functionally immune to disease pathogens. But this goes against centuries of accumulated wisdom arguing that toxic root secretions (allelopathy) poison the soil, and are best alleviated by crop rotations. Cook’s objection on page 227: “this makes no mention of a role for root diseases and ignores one of the most fundamental principles of plant pathology taught to beginning students in plant pathology, that growing the same crop in the same soil increases the populations of pathogens of the roots of that crop…It takes a long time to replace the first explanation with the correct explanation for almost any phenomenon in nature.” It also takes time, as those who have studied ecology know, for pathogen, prey or pest populations to build up to peaks before predator and natural enemy populations reduce or crash them down to low levels. Dr. Cook’s mission was to shorten that time.

One set of wheat experiments described in the “Take-All Decline” chapter 7, owed inspiration to 1950s’ potato scab disease research in Washington State, where small amounts (10%) of suppressive soil (presumably containing beneficial microbes) were added to disease-susceptible soils. Within 2-3 years, wheat soils were growing healthy plants. “Although I never repeated this experiment (nor did it need to be repeated), it would turn out to be the most influential experiment of my career,” wrote Dr. Cook on page 144. “It led to my award of a Guggenheim Fellowship…to my first competitive grant awarded by the USDA Competitive Grants Research Office (CARGO) in 1978…to the USDA ARS approving the formation of the Root Disease and Biological Control Research Unit in 1984; and to the USDA ARS providing permanent funds for me to hire…”

This only scratches the surface of a truly remarkable book likely to become a classic of science.


Natural Nicotine Heals Honey Bees

January 23, 2017

NEONICOTINOID INSECTICIDES (e.g. thiamethoxam, imidacloprid, clothianidin) developed at Bayer Japan as safer alternatives (e.g. to human spray applicators) to the natural nicotine once widely used by farmers and gardeners, is now suspected of contributing to honey bee health problems like learning disorders and colony collapse. In contrast, natural nicotine, found in honey produced by bees working tobacco fields, as well as in pollen, nectar, leaves and other plant parts, is a nutrient and medicine helping to heal weak honey bee colonies, said Susan Nicolson of South Africa’s University of Pretoria at “Entomology Without Borders,” a joint meeting of the International Congress of Entomology (ICE) and the Entomological Society of America (ESA) in Orlando, FL.

Natural nicotine, even if produced organically in a sustainable recycling sort of way from tobacco waste products, is mostly shunned in organic farming and gardening. “Over 120 million sites will be returned on a web search on tobacco, but most will not be associated with plant science,” wrote USDA-ARS researcher T.C. Tso in Tobacco Research and Its Relevance to Science, Medicine and Industry. “Many plant scientists in academic institutions cannot obtain grant support for projects using tobacco as a research tool. Some even have to avoid tobacco because of the applying of ‘political correctness’ to academic research. The tobacco plant has served as a valuable tool since the dawn of plant and biological sciences, so it is indeed a great loss to scientific progress that a research tool already invested with so many resources and about which there is such abundant knowledge and such great potential for new advancement is now being wasted.”

Honey bees readily consume bitter alkaloids such as nicotine mixed in sugary plant nectars. Adult honey bees excel at detoxifying alkaloids such as nicotine, which should not be surprising, as survival depends on it. Younger, larval honey bees have fewer enzymes to detoxify nicotine, but also survive quite well even when their royal jelly contains high levels of nicotine. Honey bees and insects immune to nicotine, such as green peach (peach-potato) aphids, transform nicotine into less toxic butanoic acid. A knotty question naturally arises: If natural nicotine heals honey bees, why are synthetic neonicotinoids so terribly different? Are natural compounds like nicotine inherently more beneficial and their synthetic analogs (e.g. neonicotinoids) inherently bad, perhaps due to subtle differences in molecular structure? If bees and other pollinators are a major concern, perhaps natural product restrictions on nicotine need to be relaxed to provide competition to the synthetic neonicotinoids.

“Alkaloids, especially in the nicotine family, have been the main focus of tobacco research because alkaloids are the characteristic product of tobacco,” writes Tso. Dozens of other tobacco molecules are relatively overlooked, including sugar compounds providing least-toxic botanical insect and mite control. Anabasine (neonicotine), an alkaloid found in tobacco and other plants, has also been widely used as a natural insecticide. Strangely enough, anabasine is also an insect attractant and a poison gland product of Aphaenogaster ants. In a strange urban twist to the wild bird practice of lining nests with medicinal herbs emitting essential oils counteracting parasites: Researchers in Mexico discovered urban birds lining nests with cigarette butts to similar advantage. In times past, organic gardeners soaked cigarette butts in water to get a nicotine spray brew. Historically, most commercial nicotine insecticide used on farms and gardens was a sustainable tobacco waste extract.

There are 60-80 described tobacco or Nicotiana species, some available in seed catalogs and grown as ornamentals. Most Nicotiana species grow wild in the Americas, with some in Australia and Africa. “Tobacco plants are easy to grow and have a short growing period,” writes Tso. “Each tobacco plant may produce 14 g or about 150,000 seeds which may provide seedlings for 2 to 5 acres (1–3 ha) of field tobacco, depending on the type.” In Europe, oil extracted from tobacco seeds is being explored for an alternative bio-diesel fuel industry, with dry leftovers as animal feed.

Native American Nicotiana species are being integrated into China’s ancient agricultural interplanting tradition. When tobacco is interplanted in vineyard rows, tobacco roots and grape roots intermingle. Perhaps some sort of biological soil fumigation occurs. Whatever the mechanism, vineyards are cleansed of soil-dwelling phylloxera aphids, a pest that almost destroyed wine grape growing in France in the 1800s and is still a worldwide problem. According to the journal Chinese Tobacco Science, intercropping tobacco with sweet potato also alleviates soil and other pest problems, maximizing profits per unit area of land. Burley tobacco is intercropped with cabbage and other vegetable crops, according to the Journal of Yangtze University (Natural Science Edition).

Neonicotinoids are soluble in water and absorbed systemically by plants, and some are sprayed on urban lawns and landscapes. However, over 80% of synthetic neonicotinoids are applied to seeds prior to planting hundreds of millions of acres of corn, soybean, sunflowers and other crops. In Canada’s Ontario and Quebec provinces, 100% of corn seed is treated with neonicotinoids, said Nadejda Tsvetkov of Toronto’s York University at “Entomology Without Borders.” Though neonicotinoids were seldom found in corn pollen samples, somehow, perhaps by water transport, neonicotinoids are finding their way into clover and willow tree pollen far from corn fields.

“For a lot of farmers it is hard to get seeds untreated, especially corn,” as commercial seed is routinely treated with neonicotinoids regardless of need, said the University of Maryland’s Aditi Dubey at “Entomology Without Borders. In Maryland and other mid-Atlantic USA states where low pest pressures are the norm, neonicotinoid seed treatments are both unneeded and counterproductive. In 3-year Maryland rotations with double-cropped soybeans, winter wheat and corn, sowing seeds treated with thiamethoxam or imidacloprid reduced beneficial predatory ground beetles and increased slug damage to crops. Mid-Atlantic USA farmers typically apply 4 unnecessary prophylactic seed treatments every 3 years. Besides reduced biocontrol and more pest damage, soil accumulation over time is a disturbing agro-ecosystem possibility.

Alternative seed treatments include natural plant hormones such as salicylic acid and methyl jasmonate, which induce a natural immunity called induced systemic acquired resistance (SAR). Crops such as lettuce and argula (rocket) grown from seed treated with salicylic acid and methyl jasmonate also release volatile gases repelling pests such as sweet potato whitefly, a major worldwide pest, said Ben-Gurion University’s Mengqi Zhang at “Entomology Without Borders,” a gathering of 6,682 delegates from 102 countries. Numerous botanical materials and microbes have also been investigated around the world as alternative seed treatments.

A proactive approach to honey bee and bumble bee health includes a diversified landscape sown with herbs and medicinal botanicals for self-medication, not just natural nicotine from tobacco nectar or other sources. Thymol, an essential oil found in thyme and many other plants, is already sprayed in hives by beekeepers to combat Varroa mites. At “Entomology Without Borders,” North Carolina State University’s Rebecca Irwin reported laboratory choice tests where bumble bees rejected nicotine. In field tests, bumble bees were given a choice of different colored flowers each with a different botanical such as thymol, nicotine, anabasine and caffeine. Bumble bees only selected flowers with thymol to self-medicate. Interestingly, thymol and other herbal essential oils also synergize nicotine, boosting effectiveness against disease pathogens and perhaps also minimizing the likelihood of colony collapse.

Landscapes and hedgerows sown with medicinal plants such as thyme, sunflower and foxglove minimize bumble bee disease transmission, said Lynn Adler of the University of Massachusetts, Amherst. The current USA farm bill will actually pay farmers to plant bee-friendly sunflower edges or hedgerows around canola fields. Antimicrobial and medicinal honeys derived from sunflower, bay laurel (Laurus nobilis), black locust, etc., also effectively combat bee diseases like chalkbrood and foulbrood, said Silvio Erler of Martin-Luther-Universität in Halle, Germany at “Entomology Without Borders.”

Bee pharmacology is also useful in human medicine. In Oaxaca, Mexico gangrene is stopped and wounds are healed by combining maggot therapy and honey, reported Alicia Munoz. Maggot therapy uses sterilized (germ-free) green bottle fly maggots to disinfect and cleanse wounds by eating unhealthy tissues and secreting antibiotics, allowing healthy pink tissue to grow back under honey-soaked gauze. This cost-effective approach reduces hospital stays, lowers morbidity and can eliminate the need for surgery. It may sound yucky, but for diabetics and patients with bed sores or wounds where surgery is medically impossible, a few maggots and a little honey is preferable to amputating wounded or infected limbs.

Cancer-fighting bee propolis products were touched upon at “Entomology Without Borders” by Chanpen Chanchao of Chulalongkorn University in Bangkok, Thailand, where hives of stingless bees are reared like conventional honey bees. Cardol, a major component of propolis from the Indonesian stingless bee, Trigona incisa, causes early cancer cell death by disrupting mitochondrial membranes and “producing intracellular reactive oxygen species (ROS).” ROS are essential to energy, immunity, detoxification, chemical signaling, fighting chronic and degenerative diseases, etc. Cardol “had a strong antiproliferative activity against SW620 colorectal adenocarcinoma,” killing colon cancer cells within 2 hours, followed by complete cell necrosis within 24 hours. Thus, cardol is an “alternative antiproliferative agent against colon cancer.”


Sunflower Power & Health

October 10, 2016

WITH PERHAPS 25 MILLION ha (62 million acres) of sunflowers grown for seed oil worldwide, sunflower diseases and pests and their remedies have a global impact. “Sunflower oil can be used as an alternative or additive to diesel fuel to create biodiesel, a clean-burning alternative fuel produced from a renewable resource,” wrote G.J. Seiler, one of many worldwide contributing authors to the Compendium of Sunflower Diseases and Pests, a book produced by the American Phytopathological Society (APS), a scientific group whose essence includes plant doctoring, discerning what makes for healthy versus diseased plants. “Use of the product may decrease farmers’ dependence on petroleum fuels by substituting ‘farm-grown’ fuel for use in diesel engines. For use in diesel engines, sunflower oil requires more extensive purification, including removal of waxes and gums. Minor engine modifications, such as improved fuel filters, are also necessary to burn any vegetable oil. Since the energy content of sunflower oil is less than that of diesel fuel, consumption is greater and power output is less.” However, the high-protein residues leftover from sunflower oil extraction have the right amino acid balance to mix with soybean meal to grow healthy chickens and livestock, a virtuous ecological cycling of sunflower plants.

Indeed, in Argentina’s southern Pampas, if you get the planting times right, sunflower and soybean are compatible as intercrops. Working in agriculture, I observed sunflower border rows or perimeters around conventional crop fields attracting pollinators and natural enemies providing biological control of pests. However, sunflowers are so attractive to beneficial insects that they do not want to leave. Thus, sunflower stalks need vigorous shaking to get green lacewings and natural enemies of aphids and other pests to take flight into adjacent crops needing protection. At the moment, fields of GMO canola producing high quality cooking oil are displacing sunflower fields in many areas. But the APS sunflower Compendium awakened my love for sunflowers, as even the diseases afflicting the plants have a certain beauty under the microscope. So, I can see the APS sunflower Compendium serving as an outstanding library reference for biology teachers and students looking for projects in sunflower-growing areas.

R.M. Harveson opens the APS sunflower Compendium with a brilliantly concise narrative chronicling the journey of sunflower seeds from their native North America to Russia, where innovative plant breeders painstakingly created the first modern sunflower seeds high in oils, providing the platform for today’s worldwide sunflower industry. The Mennonites, an anti-violence religious group migrating from Germany (Prussia) and a war-plagued Europe to Russia in the 1780s for free farm land promised by Catharine the Great, pioneered commercial sunflower oilseed farming in a harsh landscape long thought unsuitable for even subsistence farming. Their descendants were lured to Saskatchewan and Manitoba, Canada to create North America’s sunflower industry. During World War II, when “securing the fields of Ukraine was a major objective of Adolf Hitler’s war on Russia,” sunflower oil was a superior antifreeze, lubricating World War II weapons that froze with conventional gun oils. Joe Pappalardo’s excellent and entertaining book, Sunflowers: The Secret History: The Unauthorized Biography of the World’s Most Beloved Weed (Overlook Press) adds color and specifics, and is cited in Harveson’s “Selected References” in the APS Compendium.

Personally, I love the feel on my head and hair of a shampoo blending organic sunflower oil, citrus oils and herbs; and organic sunflower seeds at breakfast supply trace minerals like zinc, which is often deficient in produce grown in local California soils. Sunflower sap, which occasionally has been used medicinally, contains terpenoid compounds that show potential as alternative botanical pesticides. As ingredients in traditional medicines, wild sunflowers have been used for everything from wound healing and rattlesnake bites to combating infection and pain relief. Modern medical uses include topical oil formulations with sunflower oil to improve skin health, fight fungal infections, relieve inflammation and itchy, dry skin, and in dentistry to improve the gums.

Seed hulls of certain sunflower varieties are traditional sources of yellow, ruby red, purple, and black dyes or colorants (e.g. anthocyanins) useful in body painting, cosmetics, foods and textiles. Indeed, some plant breeders are working on a sunflower seed that would be high in oil and have a ruby red husk or hull that could be extracted to replace commercial synthetic red food dyes. Other researchers see the hulls as useful absorbents for wastewater reclamation. But by far, sunflower seed oils (e.g. NuSun for cooking) are the main sunflower item of commerce, and even trade on the commodities futures markets. Sunflowers seeds like Mammoth Russian for eating and snacking or adding to birdseed blends are important crops, but minor compared to the large acreages of sunflower oilseeds grown worldwide.

For various reasons, sunflowers have not become commercialized as a biotech GMO (Genetically Modified Organism) crop, which makes life easier for organic growers. Though perhaps better known from Van Gogh canvases, sunflowers were experimental subjects on the USA’s Apollo space missions. And “sunflowers have been successfully used as vehicles for the phyto-remediation of soil contaminated with heavy metals and radioactive materials (e.g. following the Chernobyl disaster),” wrote Harveson. In March 2011 after the Great East Japan Earthquake and Fukushima Daiichi Nuclear Power Plant accident, sunflowers and sunchokes were among the “alternative technology” plantings to concentrate and remove from soils radioactive cesium, which emits gamma rays and has a 30-year half life.

Sunchokes or Jerusalem artichokes, perennial sunflowers grown for edible tubers high in inulins, are sometimes recommended for diabetes and cardiovascular diseases, being associated with lowering blood sugar and cholesterol. Indeed, Jerusalem artichoke chips have been tested as a snack food alternative to potato chips for diabetics, being almost devoid of starch and fats. Several dozen other sunflower species are known, including one that is 92% pure natural rubber. Most likely sunchokes and other sunflower species including backyard ornamentals are subject to pests and diseases similar to those described in the APS Compendium.

To prevent pests and diseases, as a kind of insurance, perhaps 95% of commercial sunflower seeds are coated with neonicotinoid pesticides (e.g. thiamethoxam, clothianidin) at planting time, according to Michael Bredeson of South Dakota State University in Brookings at the 2015 joint meeting in Minneapolis of the Entomological Society of America (ESA), the American Society of Agronomy, the Crop Science Society of America, and the Soil Science Society of America. Bredeson studied 11 commercial sunflower fields, and found that “the seed treatment failed to improve yield or decrease herbivores.” In other words, quite apart from whatever effects on honey bees and beneficial organisms higher in the food chain, the neonicotinoid seed treatments are mostly a waste of resources and money. Though perhaps they do buy peace of mind for commercial sunflower growers, much like any insurance policy.

But the peace of mind bought by unnecessary early-season pesticide seed treatments may bring ecological food chain effects that cost sunflower growers more money and crop loss later in the season. The neonicotinoid pesticides may enter the food chain via plant nectar, plant tissues and predator consumption of tainted prey. Indeed, Pablo Gontijo and colleagues (2015) reported that sunflower seeds treated with thiamethoxam poisoned minute pirate bugs (Orius insidiosus), which are major predators of aphids, caterpillars, spider mites and other pests. Part of the problem is that the beneficial bugs, besides eating pests, also suck moisture directly from plants and thereby become poisoned by systemic pesticides used as sunflower seed treatments.

Likely the poisoned pirate bugs are only the tip of the proverbial iceberg. At the 2015 ESA meeting, Sirilak Lankaew from RYFCRC in Rayong, Thailand reported that cassava cuttings treated preventively with thiamethoxam provided 1-2 months cassava mealybug protection at the cost of food chain effects on beneficial insects via poisoned cassava nectar. Specifically the wasp Anagyrus lopezi, a cassava mealybug natural enemy, feed on the poisoned cassava nectar and “experience acute mortality for up to 21 days after treatment, and have significantly reduced lifespan for at least 42 days after treatment.” With 8 million farming households in Thailand growing cassava and 70% of Thailand’s small-scale farmers using neonicotinoid pesticides, there is a need for alternative technologies “fully compatible with (naturally-occurring and cost-free) biological control.” In sunflower, something like the APS Compendium to identify the potential problems is a good first step towards minimizing unnecessary pesticide treatments and developing alternative technologies.

One approach to developing sunflower soils that are disease-free and avoiding seed treatments is the opposite of crop rotation. Namely growing the crop repeatedly in the same soil so that disease organisms build up and then are destroyed by natural biological agents. It is like the predator and prey cycle, where pests buildup to high levels and even cause some damage before being opportunistically exploited and knocked down by their natural enemies. This approach, known as building a disease suppressive soil, can take a few years; and is perhaps best suited to patient organic growers with the wherewithal to weather those tough early years, and possessed of a confidence, hope or faith that the natural cycles will eventually play out. Likely the Mennonites whose experiences Joe Pappalardo recounts in his book took this route in turning the barren Ukraine, Russian and Canadian lands into productive agricultural fields in the era predating intensive chemical agriculture.

Another interesting alternative technology with ancient roots is interplanting, the idea of mixing different crops in the same fields. In Pakistan, sunflowers are being considered as a healthful alternative for local cooking oil shortages via interplanting sunflowers with the staple mungbean crop. In Florida, sunflower strips have been proven to attract honey bees and a variety of predators and parasitoids supplying natural biological pest control to adjacent organic vegetables. In China, parts of Asia and Africa, and even the Americas, sunflowers are viewed as an alternative technology to reduce herbicide use. Sunflowers provide natural weed control via shading the ground and natural herbicidal compounds (allelochemicals) toxic to some of the world’s worst weeds, such as dodder and barnyard grass. Multiple benefits if you can get rid of a weed patch, produce beneficial insects and pollinators, and harvest some seeds at the same time.

The health benefits of sunflowers will likely be a key driver for this crop in the future, though medicinal sunflower benefits are far from the cutting edge of agriculture and medical research in the genomic era. Broader medical applications may involve anti-inflammatory and cardiovascular benefits, bone health, detoxification, skin protection (e.g. from light & anti-aging) and anti-cancer effects. Applied to the skin, sunflower oil formulations may reduce bacterial and fungal infections, and are touted by some for premature newborns. In Cuba a product called Oleozon, sunflower oil treated with ozone gas, was registered in 1999 to treat fungal skin diseases (tinea pedis); and can stop bacteria and viruses resistant to multiple drugs.

Interestingly, researchers in Iran writing in the Journal of Food Science and Technology like the idea of infusing highly unsaturated oils like sunflower seed oil with raspberry or related Rubus species (e.g. blackberries) as a GRAS (Generally Recognized As Safe) alternative to preservatives like BHA and BHT. Rubus leaves add other medicinal properties to sunflower oil, “including as astringent, hypoglycemic, anti-diarrhea, anti-inflammatory agents for mucous membrane of oral cavity (mouth) and throat.” Many other oils and herbs may have medicinal value when combined with high linoleic acid sunflower oil. Time will tell.

The whole idea of plant medicines may yet return to modern medical practices for a variety of reasons. “Extended life expectancy is accompanied with an increase in age-related pathologies that include cardiovascular and neurological diseases, obesity, and cancer, conditions that are inflicting an immense pressure on health care costs and quality of life,” write researchers Andrea Doseff and Erich Grotewold at The Ohio State University and Arti Parihar in Ujjain, India, in the book, Pigments in Fruits and Vegetables (Springer, 2015). “Thus, there has been an increased interest in recognizing and understanding the mechanisms of action of active nutritional compounds with health benefits, or nutraceuticals, for the prevention and treatment of various diseases.”

The researchers in India and Ohio note that over 8,000 flavonoid chemicals beyond vitamins have been identified, including a range of anthocyanins like those in sunflowers, “which are responsible for providing colors to fruits and vegetables, and have dietary value as color additives with potential health benefits.” Over 10,000 tons per year of anthocyanins from black grapes alone are consumed every year, and this whole general category of plant pigment compounds has “uses in the prevention and treatment of inflammatory diseases including cardiovascular diseases, obesity, and cancers.” Who knows what concentrated research into sunflowers would reveal?


Pigments of the Imagination: Cochineal’s Renaissance

June 22, 2016

SAP-SUCKING SCALE INSECTS, such as cochineal, kermes and lac, are sometimes sprayed with pesticides as landscape and crop pests, and other times cultivated as beneficial insects. For example, cochineal secals have provided biological weed control in India, Australia and South Africa where imported prickly pear cactus (Opuntia spp.) hedges have escaped and become rangeland weeds. Cochineal scale insects, bred in ancient Mexico to yield 15%-30% color pigment content, have been grown in the Americas for many centuries on prickly pear cactus as a sustainable, biodegradable colorant crop yielding dyes ranging from red, yellow, orange and brown to pink, lavender and purple (depending on mordant, pH, etc.). Intensely red cochineal has a long and famous history in painter’s palettes, tapestry and fabrics, and has been used for centuries to color or stain tissues red or purple for microscope visibility in biology and microbiology labs, medicine and dentistry. Cochineal scale pigments also color selected beverages, foods (on labels as E-120 & carmine) and cosmetics like lipstick, rouge and nail polish. Biochemistry labs like the cochineal red molecule’s ability to bind or bond with proteins, nucleic acids and fats (lipids). Analytic chemists use cochineal “for photometric determination of boron, beryllium, uranium, thorium, and osmium.” At the cutting edge frontier of science, cochineal pigments are being adapted to “molecular information processing” and computing. The red pigment’s “strong photosensitization and photocurrent switching effects” are being designed into next generation optoelectronic (i.e. light, photon) devices like semiconductors, fuel cells, sensors and photovoltaic solar energy systems.

“In Latin-the indispensable language of Renaissance medical professionals—the word pigmentum signified both a pigment and a drug,” writes Amy Butler Greenfield on page 83 of the paperback edition of her meticulously researched book, A Perfect Red, which follows the parallel rise and fall of the Spanish Empire and the secretive cochineal red export trade. “Artists who made their own paints were often advised to procure cochineal from their local “Drugist” or pharmacy, advice that highlights the fact that Europeans also used cochineal as a medicine,” a practice “at least partly borrowed from ancient Mexico,” where cochineal was used to clean teeth and also dissolved in vinegar and applied as a poultice to cure wounds and strengthen bodily organs. Spain profited more from importing cochineal into Europe than from all its plundered and mined New World gold. When ancient alchemy’s metamorphosis into modern chemistry advanced to synthesizing a less expensive, wider range of brighter dye pigments, the Spanish red dye monopoly was obsoleted and the financial collapse of the steadily weakening empire allowed for a global power shift; the USA, fresh from coast to coast expansion and hot for global colonial-style conquests, easily knocked off the remnant hollow shell of the Spanish Armada in the Caribbean and Philippines in 1898.

Let’s start with cochineal and scale insects as pests, and organic control alternatives, as that is how most people encounter and view scale insects. Parasitoid wasps, lady beetles, birds and many other natural enemies provide biological control of scale insects, but not always enough at the right time. Highly refined petroleum oils, vegetable oils and high-pressure water sprays (with or without soap or surfactants) are among the often used remedies. High pressure water sprays, from a nozzle or heavy overhead rainfall, wash off or injure cochineal scales; and this remedy is sometimes used post-harvest by packing houses to clean fruit prior to shipping. Laboratory studies indicate that epazote (Chenopodium ambrosioides), mint (Mentha spp.) and marigold (Tagetes spp.) extracts applied with emulsifiers are potential organic or environmentally friendly synthetic pesticide alternatives.

At the Entomological Society of America (ESA) annual meeting in Minneapolis I talked with Colorado State University extension entomologist Whitney Cranshaw, whose special spiked shoes for killing white grub beetle larvae beneath the soil surface while walking golf course turf and lawns achieved notoriety in Smithsonian magazine many moons ago. This time he was a lonely entomologist, as out of hundreds of passersby no one was stopping at the poster of graduate student Rachael Sitz reporting on a kermes scale vectoring a bacteria causing drippy blight of red oaks in Colorado. Cranshaw was ecstatic having a customer, and figured I was studying the poster display because the kermes scale was also found in California locales such as San Jose, Mammoth Lakes and Monticello Dam on blue oaks and chinquapin bushes. Actually, I was wondering if this particular kermes scale, which went by the scientific name Allokermes rattani, was related to Old World kermes scales used for centuries by pigment artists in Europe and Asia. According to Cranshaw, workers handling the Colorado kermes scale came away with hands dyed a deep brown. So, perhaps this “pest” scale insect is indeed an untapped resource, similar to cochineal, waiting to be discovered by textile artists, painters and photographers looking for natural organic pigments.

My own interest in these insect pigments is a bit abstract, how to incorporate these pigments into the photographic printing process, inspired in part by viewing Robert Rauschenberg’s vegetable pigment prints with photo images from Indonesia. Cochineal was apparently on occasion used in early color photography printing, dating back to the 1800s and heliochromes, which I surmise are solar prints that also use silver as a light-sensitive pigment. Some modern authors talk of a “green synthesis,” fusing conventional silver nanoparticle photography with cochineal red pigments; but I have not found much on the subject. “Color photography,” U.S. Patent No. 923,019 from 25 May 1909 reads: “To all whom it may concern: Be it known that I, EDGAR CLIFTON, a subject of His Majesty the King of the United Kingdom of Great Britain and Ireland, residing at 3 BeaufortVillas, London Road, Enfield, in the county of Middlesex, England, have invented certain new and useful Improvements in Color Photography…known as the two color process; the three color process; and the four plate process…so that the assemblage gives more or less natural color effects…As the red dye: alizarin (with alumed reliefs), cochineal red (or carmin with ammonia), or magdala red…”

SCALING UP PRODUCTION of pigment scales, versus natural harvest, is often surprisingly difficult. For one thing, about 14,000 individual scale insects are needed to obtain 100 grams of raw cochineal pigment. Far from being dumb savages, ancient Mexico’s New World cochineal growers were superb insect breeders. The best cochineal “breeds” contain 18%-30% pigment by dry weight. Spaniards settling in the New World never mastered the delicate art of cultivating cochineal scale on prickly pear cactus, and instead relied on the indigenous los indios de Mexico, some of whom grew rich on the cochineal trade in what was essentially a free market. Many Spanish colonists found it intolerable that the natives were becoming the richest citizens, and this led to all kinds of frictions and conflicts aimed at turning the natives into poorer, more docile (less uppity) and easier to control colonial subjects. The Spanish were remarkably successful at keeping curious outsiders out of the cochineal production areas for centuries, making the cochineal red dye one of the world’s all-time best kept trade secrets. Most Europeans assumed the grana or granules of cochineal were seeds or plant material, like indigo or madder. On those rare occasions when the secret was revealed, the public refused to believe that cochineal red was literally dried insects. This combination of secrecy and worldwide ignorance allowed the Spanish cochineal monopoly to persist for several centuries and be more lucrative than precious metals.

As any entomology grad student can tell you, the same insect that is an abundant pest can often be impossibly hard to grow when you want it for experiments or as a thesis subject. For one thing, the “insect crop” usually has its own set of pests (called natural enemies), which for cochineal scales includes bacteria, lady beetles, syrphid or hover flies, predatory caterpillars, rodents, reptiles and birds. To prevent “crop failure,” cochineal scales need pampering and protection: 1) from natural enemies; 2) shade to protect from direct sunlight; 3) shelter from heavy rains that wash off and injure the scales. Raising cochineal scales as “farm animals” or “livestock” on prickly pear cactus was often a family enterprise in Old Mexico, an art or skill passed down from generation to generation. The prickly pear cactus itself is still also food, animal fodder and medicine in Mexico. But cochineal grana are no longer treated like money or currency, as it was in Aztec Mexico when cochineal was used in payment of tribute or taxes. In that sense, in contrast to a modern dollar, euro, yen, peso, pound, rupee or digital currency, which cannot be directly used as dyes or medicines, the grana possessed an exquisite versatility and flexibility in ancient times.

CARMINIC ACID, a MEDICINAL CHEMICAL pigment compound extracted from cochineal and first synthesized in 1998, belongs to a class of anti-tumor and antibiotic compounds called anthracycline derivatives, which “are believed to develop their cytotoxic effect by penetrating into the tumor cell nucleus and interacting there with DNA,” write chemists at Gazi University in Ankara, Turkey. Combined with other compounds, cochineal is also active against viruses and other microbes. In Tamil Nadu, India cochineal scale insects collected from cacti are crushed, boiled in water and dried to a powder used against whooping cough and as a sedative. Other traditional uses likely abound.

In nature, cochineal functions as an insect repellent. One theory is that cochineal repels ants, protecting young scale insects before their protective waxy outer covering forms. A carnivorous caterpillar eating the scales incorporates the cochineal dye into its own bodily defenses. A study in the Journal of Polymer Science concluded that cochineal and other natural dyes (madder, walnut, chestnut, fustic, logwood) and mordants (aluminum, chrome, copper, iron, and tin) increased the insect resistance of the wool fabric to attack by black carpet beetles.” Indigo was least effective, and cochineal and madder were most effective except when used with tin and chrome as the mordant or binding agent. I only remember one ESA presentation investigating cochineal as a natural insecticide, and that was back in 2004; the idea was that since carminic acid was already approved as safe for food by the FDA, cochineal could be formulated as an organic bait spray to stop fruit flies without losing organic certification. The researcher theorized that cochineal needs sunlight to be activated as an insecticide, and would thus be ideal for organic agriculture. But as far as I know, the idea was never adapted as an agricultural or quarantine practice.

COMBINING COLOR and HEALING is, however, an idea gaining traction. Carminic acid, a brilliant red compound constituting about 10% of cochineal8, “is one of the most light and heat stable of all the colorants and is more stable than many synthetic food colors,” write Khadijah Kashkar and Heba Mansour in the Department of Fashion Design at King Abdul Aziz University, Saudi Arabia. “Besides the color attributes, recently, also has been reported to beneficial to health with potential antibiotic and antitumor properties. At the beginning of the 21st century it is predicted that many colors will be used for both their additional beneficial functions in the body, as well as, coloring effect.” Whether color and healing were also linked in ancient or Aztec times with cochineal is an intriguing question. Perhaps everything old is indeed new again, but who knows what the ancient New World healers or shaman thought when applying bright red or purple cochineal poultices.

PREVENTIVE MEDICINE might be what to call the combination of organic cotton and natural cochineal dyes to block ultraviolet light from skin contact. Ajoy Sarkar of Colorado State University, writing in the journal BMC dermatology: “The ultraviolet radiation (UVR) band consists of three regions: UV-A (320 to 400 nm), UV-B (290 to 320 nm), and UV-C (200 to 290 nm). UV-C is totally absorbed by the atmosphere and does not reach the earth. UV-A causes little visible reaction on the skin but has been shown to decrease the immunological response of skin cells. UV-B is most responsible for the development of skin cancers…Other than drastically reducing exposure to the sun, the most frequently recommended form of UV protection is the use of sunscreens, hats, and proper selection of clothing. Unfortunately, one cannot hold up a textile material to sunlight and determine how susceptible a textile is to UV rays.” Heavy concentrations of synthetic dyes in synthetic fabrics generally provide good UVR protection, but are not as comfortable as cotton fabrics for warm, humid climates. Generally, the darker the color and the thicker the weave or denser the fabric, the better to protect against UVR. Depending upon the weave (e.g. twill vs sateen), Sarkar reported good to excellent UVR protection with natural dyes such as madder, indigo and cochineal.

COCHINEAL’S 21ST CENTURY RENAISSANCE and resurgence includes harnessing cochineal’s ability to capture (harvest) or route light (photons) and electrons in advanced or next generation optoelectronic devices such as semiconductors, light harvesting antennae, sensors, fuel and solar cells, and molecular information and logic gates for computing devices. I was surprised to learn that natural pigments have a long history in advanced electronics: “As early as the birth stage of lasers, coumarin, which is found naturally in high concentration in the tonka bean (Dipteryx odorata), was used in dye lasers” and “coumarin dye is still the basic active medium for many tunable dye laser sources,” writes M. Maaza (2014) of the University of South Africa. “Extracts from Hibiscus sabdariffa, commonly known as Roselle, carminic acid of the cochineal scale and saffron exhibit exceptional nonlinear optical (NLO) properties of a prime importance in optics.”

THE “NEXT GENERATION” SOLAR CELL replacement for today’s silicon-based solar cells will probably be a dye-sensitized solar cell (DSSC) based on titanium dioxide (TiO2), a semiconductor material that is fused with color pigments analogous to those used in conventional color photography (e.g. silver halide emulsions sensitized by dyes). TiO2 and other metal oxides are widely used in medicine, food preservation, cosmetics, sunscreens, paints, inks and a wide range of electronic devices for sensing, imaging, optics, etc. TiO2 is relatively inexpensive, and deemed low toxicity. Interestingly, TiO2 nanoparticles for solar cells can be produced from cultures of bacterial cells, such as the Lactobacillus sp. found in yogurt or curd, which means an even “greener” solar cell fabrication process.

The scientific roots of the modern solar cell go back to French physicist Edmond Becquel’s discovery of the photovoltaic effect in 1839; and prototype solar cells with efficiencies of 1% or less also date back to the 1800s. Though Albert Einstein explained the photovoltaic effect in 1904, the development of lightweight solar energy cells to power spacecraft in the 1950s. But the DSSC or Grätzel cell is a 1990s’ innovation attributed to Mr. O’Regan and Michael Grätzel. “This new device was based on the use of semiconductor films consisting of nanometer-sized TiO2 particles, together with newly developed charge-transfer dyes,” and had “an astonishing efficiency of more than 7%,” write Agnes Mbonyiryivuze et al. (2015) in the journal Physics and Materials Chemistry.

Next generation DSSCs or photovoltaic cells are currently undergoing a major design transition using natural color pigments like those found in cochineal scale insects. DSSCs with efficiencies in the 10% to 15% range can be manufactured with titanium dioxide (TiO2) nanoparticles bonded on a thin film with a light-sensitive dye utilizing a rare and expensive platinum group heavy metal, ruthenium (Ru; named after Russia). Ruthenium’s relatively high cost and environmental and toxicology concerns are a barrier to commercialization that is spurring the search for substitutes; namely cheaper and more environmentally friendly natural pigment. Companies working “to bring DSSC technology ‘from the lab to the fab’” include “Dyesol, G24i, Sony, Sharp, and Toyota, among others,” write Mbonyiryivuze et al. (2015). “Functional cells sensitized with berry juice can be assembled by children within fifteen minutes, the large choice of colors, the option of transparency and mechanical flexibility, and the parallels to natural photosynthesis all contribute to the widespread fascination. In 2013, the drastic improvement in the performance of DSSC has been made by Professor Michael Grätzel and co-workers at the Swiss Federal Institute of Technology (EPFL). They have developed a state solid version of DSSC called perovskite-sensitized solar cells that is fabricated by a sequential deposition leading to the high performance of the DSSC. This deposition raised their efficiency up to a record 15% without sacrificing stability…this will open a new era…even surpass today’s best thin-film photovoltaic devices.”

“PIGMENTS MAKE NATURE COLORFUL and LIKABLE,” writes Chunxian Chen, a researcher at the University of Florida’s Citrus Research and Education Center and the editor of a 277-page book published by Springer in 2015, Pigments in Fruits and Vegetables: Genomics and Dietetics, which places a heavy emphasis on the nutritional and medicinal benefits of colorful natural pigments like those coloring crops of carrots and sweet potatoes orange and radishes and tomatoes red. “Plant pigments usually refer to four major well-known classes: chlorophylls, carotenoids, flavonoids, and betalains…Chlorophylls are the primary green pigments for photosynthesis. The latter three are complementary nongreen pigments with diverse functions…The importance of colors in living organisms cannot be overstated…they are biosynthesized behind the scenes in living organisms and ultimately ingested in daily diet.” Presumably this daily consumption and medicinal benefits makes natural pigments in general logical and sustainable alternatives to expensive heavy metals in “green” electronic, computer and solar energy cell designs.

Agnes Mbonyiryivuze, in her 2014 dissertation titled “Indigenous natural dyes for Gratzel solar cells: sepia melanin,” provides a readable overview of solar energy cells utilizing natural pigments. The list of natural pigments fabricated into solar cells is long, and the sources range from cochineal scale insects, green algae, baker’s yeast, fungi and bacteria to bougainvillea flowers, Chinese medicinal plants (e.g. tea, pomegranate leaves, wormwood, mulberry fruit) and food crops like beets, parsnip, purple cabbage, blackberry and black grapes. The black pigments are of particular interest, including skin melanins providing UV protection and the black powder from cuttlefish (Sepia officinalis) ink sacks. “To maximize the absorption of more photons from the sun light for DSSC,” writes Mbonyiryivuze, “it is better to have a black dye sensitizer having extremely high broadband absorption. It should absorb not only in visible range but also in ultraviolet and near-infrared regions. This challenge can be handled by using natural dyes from other sources such as fauna from which sepia melanin was obtained. Melanins are well-known natural pigments used for the photoprotective role as a skin protector because of their strong UV absorbance and antioxidant properties. Melanin possesses a broad band absorbance in UV and visible range up to infrared.” Sepia melanin “can also conduct electricity and is thus considered a semiconductor material.”

“There are numerous trials of solar cell construction which are based on biomolecules and supramolecular systems, for instance, chlorophylls, porphyrins, phtalocyanines, and other natural or bioinspired dyes,” write researchers in Poland constructing double layer solar cells with cochineal red and gardenia yellow pigments bonded to TiO2 nano-surfaces. “Hybrid materials incorporating biomolecules immobilized on conducting or semiconducting surfaces are unique systems combining collective properties of solids with structural diversity of molecules, which besides photosensitization show other unique electrochemical and catalytical properties.”

According to Mousavi-Kamazani et al. in Material Letters (2015), quantum dots composed of cochineal and copper offer the economically attractive “possibility of single step production of three-layered solar cells.” Clearly, though the distance might be measured in years or decades, we are getting closer to a cochineal and natural pigment renaissance that transcends traditional fabric dyes and artist’s pigments and extends into medicine and the heart of modern computers, lasers and electronic and optical devices of all sorts.


Insect Perceptions, Irrelevant or Important

February 23, 2016

“IT WAS THE BUTTERFLIES, my people say, who brought the first human babies to their feet,” writes Canadian Richard Wagamese in “Butterflies Teachings,” an essay touching on “what’s called Enendamowin, or Ojibway worldview” in his brilliant collection, One Native Life. “Before that, the New Ones sat in innocence beneath a tree, watching the world around them with wonder. But Creator had planned more for them. Their destiny called for them to move throughout the world. These human babies were meant to walk upon their two legs, and as long as they sat under that tree their destiny could not be fulfilled…The air seemed to tremble with butterflies. The human babies were entranced. Each time they tried to snare a handful of colour, the cloud drifted away. They stretched their arms higher. They thrust out their hands. But it was to no avail. When the butterflies danced just out of reach a final time, the New Ones lurched to their feet and raced after them across the meadow. The Animal People celebrated quietly, then returned to their dens and burrows and nests. The human babies never caught those butterflies, but they kept on running, right into the face of their destiny…”

Quite a different worldview from Prague and Eastern Europe, where Franz Kafka’s famous novel Metamorphosis begins: “As Gregor Samsa awoke one morning from uneasy dreams he found himself transformed in his bed into a gigantic insect.” According to the “wall notes” in the exhibit “Disguise: Masks & Global African Art” at the Fowler Museum at UCLA, Kafka’s words inspired South Africa artist Walter Oltmann. Among neon masks, dancing mask videos and sculptured African animals wearing masks are Oltmann’s large anodized aluminum and brass wire caterpillars in the midst of “transformation and change” (metamorphosis) and fashion sketches titled “Beetles & Suits.” The suit coats are gracefully curving, shell-like beetle elytra (outer wing covers) fashionably topped off with the latest antennae, and looking both business-like and sci-fi out of Star Wars or Star Trek at the same time. I can easily imagine a cell phone age makeover of The Beatles’ Sgt. Pepper’s Lonely Hearts Club Band regalia and long hair with “beetle suits” and high-fashion antennae. Perhaps too much entomology affects the psyche. Oltmann writes that “spending an inordinate amount of time on making something that is usually considered insignificant like an insect, does make us look differently at them.” He says it “speaks of neither this nor that,” but I’m not so sure.

Insect observations appear in haiku by Japanese master Matsuo Basho, whom I think of as the late 1600s slightly more refined counterpart of 20th century Los Angeles poet Charles Bukowski, who was too busy with “other interests” to notice beetles, flies, mosquitoes and roadside weeds. In Moon Woke Me Up Nine Times: Selected Haiku of Basho, translator David Young writes: “Odd numbers predominate; a dance is occurring, and each third of the poem is a turn, a gesture, a refining or revelation… The poem seems to end almost as soon as it has begun, a small flash of lightning…A more literal version of the haiku cited (below) would be something like: What can save your life? / one leaf, with an insect / sleeping on its journey… the journey, which refers to a Chinese story that Basho’s readers would know but that is largely meaningless to English readers…‘Basho mash-ups,’ I have sometimes called my versions”:

One insect
asleep on a leaf
can save your life

Perhaps Basho was thinking of medicinal silkworms slumbering on mulberry leaves, or perhaps his mind was journeying among high mountains where ghost moths metamorphose with fungi into plant-animal hybrids that have been used in Asian medicine for centuries. David Young says about haiku: “They love to startle, first the writer and then the reader. As though a hummingbird were to land suddenly on your resting arm. It is the way the world so often surprises us.”

A haiku by Los Angeleno Mark Jun Poulos, whose observation of the seemingly mundane urban habitat nagged at me long after I thought I had dismissed its ordinary elements from consciousness:

restroom sink-—
ladybug cooling off
in a drop of water

What nagged at me was water, a vital ingredient of life, which as hard sprays of rain washes away pesky mites and aphids that are ladybug prey. Water (H2O) is also a missing ingredient in most ecological studies of interplanting, a habitat diversity strategy designed to boost populations of lady beetles and other beneficial insects providing natural pest control. Australian grape vineyards and California lettuce fields have had some success interplanting blooming rows of sweet alyssum to provide pollen, nectar and alternative prey for ladybugs, lacewings, hover flies and other beneficial species consuming aphids and other pests. Sweet alyssum is also host to micro-wasps helping Michigan asparagus growers by parasitizing leafmining pest insects, Amanda Buchanan of Michigan State University reported at the Entomological Society of America (ESA) annual meeting in Minneapolis. But if habitats are missing water, then perhaps lady beetles, which do not puncture plants to drink fluid, will leave to find restroom sinks, puddles or other water sources. Perhaps, like providing water bowls for pets, something similar needs to be researched as part of biological control habitat alternatives. Though I would draw the line at alcoholic drinks, except perhaps beer in snail and slug traps. Another urban haiku observation by Mark Jun Poulos:

sultry afternoon—
wasp hovers over a whiskey bottle
held by a drunk bum

Ethanol or ethyl alcohol, by percentage the main chemical component of distilled whiskey, should not be abused, nor perhaps should it be so heavily subsidized as a biofuel, as that incentive exacerbates huge landscape changes measurable as reduced biodiversity. At Synergies in Science, a rare Minneapolis gathering of the ESA, American Society of Agronomy, Crop Science Society of America and Soil Science Society of America, the diminishing biodiversity of a Midwest USA with 21% less wheat, 16% less hay and much more GMO corn to distill into ethanol motor fuels was as hard to ignore as a drunk with a whiskey bottle on an urban bench. Jonathan Lundgren of the USDA-ARS in Brookings, South Dakota said we need to get away from our “very pest-centric approach” and adopt a more holistic biological network approach. Instead of a Midwest saturated with pesticides to grow GMO corn to distill into fuel tank ethanol, something as seemingly simple as adding biodiversity via cover crops amongst the corn rows could produce enough soil biocontrol of corn rootworm to eliminate wasteful neonicotinoid seed treatments whose honey bee and beneficial insect friendliness is being hotly debated. Karen Friley of Kentucky State University reported at the ESA that something as seemingly simple as native plant border rows around sweet corn fields “provide microclimates in the form of moderated temperatures, which offer shelter” for numerous natural enemies controlling corn pests.

Curiously enough, ethanol (alcohol) like that in whiskey bottles and vehicle fuels also attracts pine beetles and ambrosia beetles considered destructive forest, landscape, street tree and nursery pests. Perhaps more curiously, the very trees being attacked are producing the ethanol and releasing it into the atmosphere when stressed (e.g. by drought or flood), decaying or dying. Trees may look perfectly healthy on the outside, but inside the tree is another story, because ethanol emissions are signs of sickliness and ill health. Chemical ecologist Christopher Ranger of the USDA-ARS in Wooster, Ohio said it is a real problem, for example, when nursery seedlings are used to replant spruce forests or with dogwoods, magnolias, pines, etc. in nurseries, backyards, along streets, etc. It is definitely ecology, as the ethanol is luring in the beetles to help “recycle” the trees back into the soil as nutrients.

I liked Ranger’s reasoning: Find the tree equivalent of driver breathalyzer tests as a beetle-attack early warning system. SCRAM wrist bracelets worn by offenders for transdermal drug and alcohol detection were tested, but were not sensitive enough; taking a week to detect low tree ethanol exhalations, whereas beetles detect a few parts per million of alcohol and get to trees almost on day one. The solution was a portable ethanol monitoring device with a detector tube and a plunger to pull in air samples; developed using Japan’s Gas Tech industrial gas leak detection technology for quick detection of “inebriated” trees.

So, which is more startling and surprising: art, haiku or entomology?

Strange brew: September 17, 2015 daylight turning to dark, caught in one of those infamous, almost proverbial L.A. traffic jams at a freeway underpass on Church Lane transitioning from Sunset Blvd to Sepulveda Pass on my way past the Getty Museum to Mulholland Drive, listening to the Moody Blues Live at Red Rocks, going nowhere. Haiku and fireflies flashing internally, and externally the blinking side turn lites and red back brake lights suddenly and surprisingly metmorphosed into synchronous fireflies, albeit of a mechanical or robotic nature:

Tail and Turn Lights
Flashing like Synchronous Fireflies
In the Los Angeles Traffic Jam

 


Cholera Biocontrol (vaccines & antibiotics are insufficient)

October 22, 2015

CHOLERA, a VIRULENT, SOMETIMES lethal version of Montezuma’s Revenge, the diarrheal gut scourge bane of travelers, is commonly associated with pesky Vibrio bacteria; though similar symptoms are associated with the sometimes disease-causing and sometimes beneficial E. coli gut bacterium and many other intestinal tract microbes. Cholera is commonly controlled by an integrated management approach, often including proper sewage sanitation, water filtration, antibiotics, vaccines, rehydration therapy and the fortuitous presence of natural enemies known as phages.

Phages, short for bacteriophages, are ‘bacteria-eating’ viruses; the name phage is from the Greek word ‘phagein’, which means ‘to eat’. One might think of cholera as being like the black plague, a no longer relevant disease of the past. But a recent Google News search indicates lethal cholera outbreaks worldwide: From 54 dead in one month in Dar es Salaam, Tanzania, to Rwanda and Nigeria in Africa to Iraq in the Middle East and Haiti in the Americas; with worries about outbreaks in refugee camps worldwide where wars rage and after natural disasters such as earthquakes destroy sanitary infrastructure. In Iraq, “The epidemic is concentrated in the town of Abu Ghraib, situated about 25 kilometers (15 miles) west of the capital, Baghdad, where cholera has claimed at least 10 lives,” according to Iran’s Press TV. “Health Ministry spokesman Rifaq al-Araji has blamed the cholera epidemic in Iraq on low water levels in the Euphrates, noting that simmering temperatures during summer months may have activated the bacterium that causes the deadly disease…Cholera is an acute intestinal infection caused by ingestion of food or water contaminated with the bacterium Vibrio cholerae. It is a fast-developing infection that causes diarrhea, which can quickly lead to severe dehydration and death if treatment is not promptly provided.”

According to a “Major Article” in THE JOURNAL OF INFECTIOUS DISEASES: “Vibrio cholerae serogroup O1 and O139 organisms cause acute, watery diarrhea, with an estimated 100, 000–150, 000 deaths annually…Despite global efforts to improve drinking water quality and sanitation in developing countries, there has been little evidence of a decline in the global burden of cholera in recent years. Interest has therefore increased in the use of cholera vaccines as adjuncts to other preventive and therapeutic measures…Live oral cholera vaccines have the theoretical advantage of simulating infection by natural cholera. Experimental infection of North American volunteers has been shown to protect against cholera upon rechallenge…However, to date no live oral vaccine has conferred protection to cholera-endemic populations when tested in a randomized trial, suggesting that the predictions from studies of volunteers lacking preexisting immunity to cholera may not be readily generalizable to cholera-endemic populations.”

According to the United Nations News Centre: “A global stockpile of vaccines, funded by a number of international organizations and foundations, initially made 2 million doses of the vaccine available. In 2015, with additional funding from the GAVI Alliance, the number of doses available for use in both endemic hotspots and emergency situations is expected to rise to around 3 million. There are several examples in which the vaccine has stopped cholera outbreaks in their tracks, such as in South Sudan in 2014…But new outbreaks are ongoing in South Sudan and Tanzania” in 2015, indicating vaccines to produce natural immunity in conjunction with the best that can be done in the way of sanitation and clean water supplies is not enough. Using phages to produce natural biological control of the cholera bacterium, as part of a low-cost, integrated pest management approach, seems to have been totally and completely neglected, almost as if the successes of natural biocontrol of disease bacteria with phages from the years 1917 into the 1930s and continuing into the present in some parts of the world have been totally purged from the Western medical and public health history books. A costly neglect, in terms of human lives.

“Cholera generated as much horror and revulsion among Europeans as bubonic plague had before it, in part because of the blue-black shriveled appearance of its victims and in part because it could strike anyone without warning and kill in 4 to 6 hours,” according to an overview in Microbiological Reviews which implicated “sailors and colonists” in cholera’s global spread, not just poor sanitation (mixing sewage into drinking water supplies). “Although cholera is treatable with antibiotics and oral rehydration therapy (fluid and electrolyte replacement), it is nevertheless an extremely debilitating and sometimes fatal disease. The severe dehydration and cramps symptomatic of the disease are a consequence of the rapid, extreme loss of fluid and electrolytes during the course of the infection. The diarrhea is caused by the action of cholera toxin (CT), secreted by the bacterium Vibrio cholerae, although in some cases it may be caused by the related Escherichia coli heat-labile enterotoxin (LT).”

Historically, as mentioned in a previous blog post titled “Compost for Sustainable Soil Fertility & Disease Suppression,” Japanese cities adopted a more sustainable approach and thereby escaped the cholera epidemics afflicting London, Paris, India, the rest of Asia and the Americas: “Human waste, euphemistically called night soil, became a valuable soil fertility commodity in old Japan. Perhaps not quite worth its weight in gold, but a valuable commodity bought, sold, traded, and transported long distances from cities to farms. Rather than causing cholera and other diseases by entering the water supply as was common in European cities of the same era, sanitation and composting blessed Japan with multiple dividends…Farmers in old Japan spent their own money to build toilets and urinals along well-traveled roads for public use…” No doubt phages were also part of the integrated mix of methods providing natural biological control of cholera in old Japan, even if the invisibly small phages went unrecognized.

The 20th century use of phages for biological control of cholera and other disease bacteria was pioneered by the self-taught, French-Canadian microbiologist Felix d’Herelle, whose phage work was said by many to also be the foundation for modern molecular biology. An itinerant or journeyman scientist, who spent his life much like the modern-day post-doc, migrating from job to job around the world as he promoted phage therapy, d’Herelle was working with the Pasteur Institute in Paris while French and German troops were lining up against each other on the Western Front in World War I. In North Africa, as early as 1910, d’Herelle was pioneering the use of microbes to control biblical style locust plagues in North Africa, when he first noticed something killing the microbes used to kill the locusts; in other words, a complex ecosystem in which a higher level of natural enemies killed the lower-level natural enemies providing biological locust control.

During a World War I Paris dysentery outbreak, d’Herelle deduced that some patients were benefiting from phages invisibly providing biological control of the disease microbes. D’Herelle’s 1917 article on the subject for the French Academie des Sciences was titled “Sur un microbe invisible antagonistic des bacilles dysenterique” (“On an Invisible Microbe Antagonistic to Dysentery Bacteria”). “D’Herelle claimed that the antagonistic principle was filterable, living and organized, and hence a microbe,” wrote medical historian Ton Van Helvoort. D’Herelle “thought the living nature of the principle was proved by the possibility of transmitting it in a series of cultures of dysentery bacilli.”

Albert Einstein, who won a Nobel Prize for proving unseen forces and counter-intuitive phenomena based on mathematical constructs, agreed with d’Herelle. “The statistical explanation, which d’Herelle argued intuitively, is based on the properties of sampling that can be described by the mathematical expression known as the Poisson distribution,” wrote William Summers in his book, Felix d’Herelle and the Origins of Molecular Biology. “D’Herelle bolstered not only this argument but his own status with his well-known footnote giving Einstein’s opinion of this experiment: ‘In discussing this question with my colleague, Professor Einstein, he told me, as a physicist, he would consider this experiment as demonstrating the discontinuity of the bacteriophage. I was very glad to see how this deservedly-famous mathematician evaluated my experimental demonstration, for I do not believe that there are a great many biological experiments whose nature satisfies a physicist’…Since we have now presented the evidence proving the corpuscular nature of the bacteriophage we will no longer make use of such vague expressions as bacteriophage ‘liquid,’ ‘Fluid,’ or ‘filtrate,’ but will employ instead the more precise term’…The validity of the plaque counting assay and corpuscular nature of phage, however, would remain controversial and divide phage workers into two camps until the early 1940s.”

“The bacteriophage phenomenon was the observation that an abundant and therefore cloudy bacterial culture lysed within a short time to a clear solution under the influence of a filterable lytic ‘principle’,” wrote medical historian Ton van Helvoort. “The interpretation of this phenomenon gave rise to two main opposing positions, represented by Felix d’Herelle and Jules Bordet, who clashed heavily. In 1917, d’Herelle proposed the term “bacteriophage” for the lytic principle and was convinced it was to be characterized as a filterable virus which could lyse the bacterial culture. Therefore, this lysis was a virus disease of the bacteria which he named bacteriophagy. In the 1920s this interpretation was severely criticized by, among others, the bacteriologist and serologist Jules Bordet, who received the Nobel Prize for Medicine in 1919. Bordet’s view was that bacteriophagy was linked with the metabolism of the bacterium, while the involvement of a virus was rejected.” The dispute morphed into a personal vendetta against d’Herelle, whose strong personality was perhaps hated as much as his phage theories and his views on the dangers of vaccination that were considered heretical by the era’s Nobel Prize-winning immunologists.

According to medical historian Dottore Emiliano Fruciano: “In presenting his concepts to the scientific and world community, d’Herelle connected his phage interventions to a theoretical system that clashed with those held by institutional medical science. d’Herelle thought that the reason for natural recovery was not the humoral and cellular mechanisms activated by the immune system, but rather the presence of a virulent phage for the pathogenic bacterium in the host. His observations led him to believe that phage was a common guest of every organism from man to silkworm…d’Herelle concluded that phage was the exogenous agent of natural recovery, leading to ‘spontaneous recovery’…

“Recovery was a case of the prevalence of phage over the bacterium, and death was a case of the prevalence of bacterium over phage,” wrote Fruciano. “Furthermore, d’Herelle hypothesized that phage was able to spread among ill people, mainly via stool; thus, a lack of hygiene, while contributing to infection, would also lead to recovery; phage would have been the reason for the end of epidemics. This characteristic made phage, the recovery agent, transmissible between individuals, just like the agent of disease…

“In support of his theory of natural recovery, d’Herelle cited exemplary phenomena, including recovery following exposure to cholera. In cholera, patients generally convalesced after two or three days (sometimes within 12 hours) of initial symptoms; even ‘artificial’ recoveries through phage therapy often occurred after 24 hours. However, according to d’Herelle, observations from many animal diseases had demonstrated that it took many more days for immunity to become effective in the fight against infection. To explain natural recovery through the mechanisms of immunity was not possible because of the timing.

“Moreover, in diseases such as typhus and plague, which are characterized by strong immunity, relapses were possible during convalescence. This would mean that the patient, although convalescing, was still not immune. In these kinds of pathologies, typically typhus and plague, immunity usually lasts forever, yet immunity only comes into play 20 days following convalescence. According to d’Herelle, ‘Immunity, far from being the cause of recovery, is a consequence of recovery’. Further confirmation of d’Herelle’s theory was given by the statistics of the three hospitals in Calcutta, India. Paradoxically, the lowest rate of mortality for cholera (27%) was recorded at the hospital for poor people, the Campbell Hospital, while the highest rate of mortality (86%) was recorded at a hospital for rich people, the European Hospital – a hospital recognized in 1926 for its wealthy patients and hygienic conditions. There were fewer deaths at the hospital where care and hygiene were poor, that is, where the possibility for the development and dissemination of virulent phage or the recovery agent were best.”

The cholera and phage biocontrol case in general became intolerably heretical to many in the scientific medical establishment, what with d’Herelle’s warnings against the dangers of conventional vaccinations and the radical challenge to conventional consensus medical theories supported by immunologists who had won Nobel Prizes in medicine, said Fruciano: “According to d’Herelle, immunity and recovery were two different processes; only after the bacteriolytic action of phage could immunity be developed. Furthermore, there were two kinds of immunity: heterologous immunity, linked to the presence of phage activity against the pathogen, and homologous immunity, linked to immune system activity.

“…man contracts cholera because his immune system is not able to neutralize the bacterium. In d’Herelle’s opinion, in the case of patients with cholera, recovery occurs because of the presence of a virulent phage for Vibrio cholerae as a result of heterologous immunity, not because of natural or homologous immunity. d’Herelle found that the administration of phage resulted not only in a quick recovery, but also lasting immunity. He also asserted that a suspension of phage had strong immunizing power (here in the traditional sense) because the bacterial substances dissolved by phage action induced immune system reactions… d’Herelle’s findings were contrary to the conclusions of Metchnikoff, Bordet and Ehrlich, the founders of immunology…phage therapy efficacy would have required a revision of the current explanation of natural recovery…In other words, the proof of efficacy of phage therapy was equivalent to the proof of the truthfulness of d’Herelle’s heretical theories. Thus, to verify the efficacy of phage therapy and prevention measures, the principles of modern medicine were at stake; this was a paradigm shift for the scientific community.”

Of course, in the early years of the 20th century, prior to the invention of the electron microscope to provide visual evidence, the immunologists could plausibly argue against the existence of phages (despite Einstein’s endorsement); and in the absence of modern genomics, indeed before DNA and RNA were implicated in heredity, matching the right mixture of phages with a particular disease bacterium was perhaps more art than science, an art in continuous successful practice in just a few places such as the ex-Soviet Republics of Georgia and Russia, and Poland. Also, early 20th century medical experiments are not considered rigorous by current standards. All of which makes the several hundred successful phage experiments and interventions against cholera, plague, typhus and other diseases subject to blanket dismissal; and, hence, the absence of natural biological control from Western medical practices, medical schools, and institutional research agendas.

“The following details some of the most sensational results in phage prophylaxis that would seem to contradict the eventual dismissal of d’Herelle’s works,” stated Fruciano. “In 1927, an epidemic of Asiatic cholera was halted at its start in several villages with 2000 to 3000 Punjabi inhabitants via two methods of phage prophylaxis delivery: the first was the addition of potent, individually dosed phage preparations, and the second was the administration of phage prophylaxis to local water supplies. In both scenarios, the epidemic was terminated within 48 hours; in the past, the same result was achieved through traditional interventions within a 26-day time period.

“…at the St Mary Hospital in London, England, where penicillin was first discovered, Himmelweit developed a cross-therapy involving a combination of phage and penicillin to reduce the possibility of penicillin-resistant bacteria. This solution was very promising…Above all, the conjoined administration of phage and penicillin gave positive outcomes in clinical trials. It is likely that this experimental solution worked well because, as it is known today, the mechanisms by which phage and penicillin kill bacteria are different. Unfortunately, this alternative use of phage, in combination with penicillin, has been abandoned. Why has this possibility been forgotten despite the fact that antibiotic-resistant bacteria appeared as soon as penicillin was introduced into medical practice?

“…Summers, a historian of medicine who delved deeply into d’Herelle’s scientific works, speaks of the “Soviet Taint” as a plausible reason for the lack of interest in phage as an antimicrobial agent. Following World War II, phage therapy research continued only in eastern European countries, and “d’Herelle’s Cure” became “Stalin’s Cure”. According to Summers, phage therapy and prophylactic measures became ideological symbols of divisions and disagreements between western and eastern countries, partially explaining the lack of interest in phage as an antibacterial agent in Western medical science.”


Food Sweetener Safely Slays Insects

August 27, 2015

CERTAIN SUGARS CONSIDERED SAFE as sweeteners in the human food supply can double as environmentally-friendly pest remedies, and even make biological control of insects by beneficial fungi more practical for households, farms and gardens. Considering that caffeine from coffee grounds can be used against deadly dengue mosquitoes and that a variety of traditional herbs can blast away bed bugs, insecticidal sugar compounds should come as no surprise. Perhaps the only remedy more surprising is that rain water or simulated rain sprays from hoses or irrigation equipment can safely wash away pests with no toxic pesticide residues to worry about in the environment.

Using sugars directly to slay insects is somewhat unusual. However, sugars are commonly used as attractants, for instance to lure fruit flies, moths or ants to baits and traps both for population control and as a survey method or monitoring tool. California citrus growers have a long history of using sugar sprays as an IPM (integrated pest management) strategy to lure fruit-scarring citrus thrips to organic or botanical formulations of ryania (“from woody stem and root materials of plants of the genus Ryania”) or sabadilla (alkaloids from seeds of a lily bulb, Schoenocaulon officinale). “INTEGRATED PEST MANAGEMENT implies that techniques used to manage one pest species should not disrupt techniques used to manage other pests of the same crop,” wrote J.D. Hare and Joseph Morse in the Journal of Economic Entomology. “In citrus pest management in California, this situation is well illustrated in the choice of pesticides for the management of one major pest, citrus thrips, Scirtothrips citri (Moulton), without disruption of several effective biological control agents of the other major pest, California red scale, Aonidiella aurantii (Maskell).”

That sugars can be lethal to pests and be a source of environmentally-friendly pesticides is not exactly intuitive. “Potential of the non-nutritive sweet alcohol erythritol as a human-safe insecticide” was the strangely intriguing title of Drexel University’s Sean O’Donnell’s presentation at the Entomological Society of America (ESA) annual meeting. Many of the details were previously published in PLoS ONE, an open access journal, and in part because of the origins of the research in a grade school science project by one of the researcher’s sons, aspects of the story have been widely reported in various media. “Erythritol is a zero-calorie sweetener found in fruits and fermented foods,” summarized Lauren Wolf in Chemical & Engineering News, and “is Generally Recognized As Safe by the Food & Drug Administration and has been approved as a food additive around the globe.”

“Many pesticides in current use are synthetic molecules such as organochlorine and organophosphate compounds,” and “suffer drawbacks including high production costs, concern over environmental sustainability, harmful effects on human health, targeting non-intended insect species, and the evolution of resistance among insect populations,” write the researchers in PLoS ONE. “Erythritol, a non-nutritive sugar alcohol, was toxic to the fruit fly Drosophila melanogaster. Ingested erythritol decreased fruit fly longevity in a dose-dependent manner, and erythritol was ingested by flies that had free access to control (sucrose) foods in choice and CAFE (capillary feeding assays) studies…

“We initially compared the effects of adding five different non-nutritive sugar substitutes (Truvia, Equal, Splenda, Sweet’N Low, and PureVia,” wrote the researchers in PLoS ONE. “Adult flies raised on food containing Truvia showed a significant reduction in longevity…We noted that adult flies raised on food containing Truvia displayed aberrant motor control prior to death. We therefore assayed motor reflex behavior through climbing assays…Taken together with our longevity studies, these data suggested some component of the non-nutritive sweetener Truvia was toxic to adult Drosophila melanogster, affecting both motor function and longevity of this insect…

“Our initial analysis of sweeteners included two sweeteners that contained extracts from the stevia plant, Truvia and Purevia. While adult flies raised on food containing Truvia showed a significant decrease in longevity compared to controls, this was not the case for flies raised on Purevia. These data suggest stevia plant extract was not the toxic element in these sweeteners. Purevia contains dextrose as a bulk component, while Truvia contains erythritol as a bulk component…To determine if erythritol was the toxic component of Truvia, we repeated our longevity studies on food containing equal weight/volume (0.0952 g/ml) of nutritive sugar control sucrose, and non-nutritive sweeteners Truvia, Purevia, and erythritol. We assured the flies were successfully eating the foods containing these sweeteners through dye labelling the food with a non-absorbed blue dye (blue food), and visual confirmation of blue food present in fly abdomens and proboscises daily…The average percentage of blue abdomens throughout the study were 97.46%.”

“These data confirm all treatment foods (including Truvia and erythritol treatments) were consumed by adult flies, and suggest mortality was not due to food avoidance and starvation…A large body of literature has shown that erythritol consumption by humans is very well tolerated, and, indeed, large amounts of both erythritol and Truvia are being consumed by humans every day throughout the world. Taken together, our data set the stage for investigating this compound as a novel, effective, and human safe approach for insect pest control. We suggest targeted bait presentations to fruit crop and urban insect pests are particularly promising.”

Interestingly, a few decades ago UK researchers found that the sweeteners (sugar alcohols; polyols) erythritol, glycerol and trehalose rendered more effective several insect biocontrol fungi, Beauveria bassiana, Metarhizium anisopliae and Paecilomyces farinosus. These insect-killing fungi need a relative humidity (RH) near 100% for germination of their conidia (seed-like propagules). “Conidia with higher intracellular concentrations of glycerol and erythritol germinated both more quickly and at lower water activity,” wrote UK researchers J.E. Hallsworth and N. Magan in the journal Microbiology. “This study shows for the first time that manipulating polyol content can extend the range of water availability over which fungal propagules can germinate. Physiological manipulation of conidia may improve biological control of insect pests in the field…Although fungal pathogens have been used to control insect pests for more than 100 years, pest control has been inadequate because high water availability is required for fungal germination.”

Curiously, erythritol and glycerol, besides being sweetening substances, also function as antifreeze compounds. Certain Antarctic midges, known as extremeophiles for living in an ultra-cold habitat, ingest and sequester erythritol from their food plants; and as antifreeze it protects the adult flies from freezing. Indeed, many mysteries remain. Besides being found in green plants like stevia and in lower amounts in fruits, erythritol is found in certain mushrooms, lichens and algae. Human and animal blood and tissues apparently have low endogenous levels of erythritol; and erythritol is a yeast fermentation product (hence in sake, beer, wine). In human medicine, erythritol has been used for coronary vasodilation and treating hypertension; and according to Japanese microbiologists, erythritol ingestion may mean fewer dental cavities (caries) than sucrose sugar.


Grapes Love Tobacco & Sage

June 13, 2015

GRAPE VINES GAIN and pests suffer when TOBACCO and SAGEBRUSH grow in the same neighborhood. For example, Chinese experiments show that when tobacco roots intermingle with grape roots, vineyards soils are progressively cleansed of the dreaded soil-dwelling phylloxera aphid; the same phylloxera aphid that almost completely destroyed French grape growing in the 1800s, before resistant rootstocks were discovered. In recent decades, the phylloxera aphid has evolved new forms that destroy formerly-resistant rootstocks. But on the positive side, the phylloxera plague in nineteenth century French vineyards was a major catalyst for innovations such as the development of modern scientific agriculture and modern methods for fumigating or disinfesting sick soils.

Tobacco plants get a bad rap today, as the source of abused and addictive products with adverse health effects. But it was not always so, and need not be so today, write David A. Danehower and colleagues in the book, Biologically Active Natural Products: Agrochemicals: “When Columbus first arrived on the shores of North America, he found Native Americans growing and using a plant unknown to Europeans. This plant held great spiritual significance to Native Americans. Scientists who followed in the footsteps of the early North American explorers would later name this plant tobacco. Tobacco (Nicotiana tabacum) farming began in the early 1600s near the Jamestown colony in Virginia. As the use of tobacco products for smoking, chewing, and snuff was promoted in Europe, tobacco became a leading item of commerce between the colonies and England. Notably, George Washington and Thomas Jefferson both farmed tobacco. Thus, the history of America is inextricably linked with the history of tobacco production.”

The specific idea of interplanting tobacco with grapevines to control soil pests like phylloxera aphids is apparently a recent Chinese agricultural innovation. Why no one thought of it before is a mystery, as nicotine from tobacco plants has a long history as a fumigant and sprayed insecticide; and more recently sweet “sugar esters” (fructose, glucose, fatty acids) have been singled out from among the several thousand chemical compounds in tobacco as “new” natural insecticides (some fungi and other microbes are also killed). Perhaps agricultural tradition plays a role, as the Chinese have an ancient agricultural heritage that includes pioneering biological pest control (e.g. predatory ants to control citrus orchard pests) and routinely interplanting compatible plants for their pest-fighting and mutually beneficial effects. Of course, growing cover crops and beneficial insect plants like sweet alyssum in grape rows is becoming more common. And since ancient times, the Mediterranean areas of Europe and the Middle East have had grape vineyards interspersed with oaks (corks, barrels for wine grapes), olive trees and crops such as wheat. But never before has tobacco been grown among grape vines to control soil pests. Indeed, modern farmers seem to favor pumping liquid chemicals and volatile gases into the soil to combat soil pests.

Perhaps as close as a nineteenth century French grape grower came was Bernardin Casanova of Corsica, France, who in 1881 patented a liquid mixture of grape distillates, Corsican tobacco, spurge, laurel, grain straw, burnt cork and soap that was rubbed and poured on the base of grapevines to kill phylloxera. In California, which has native plants that are every bit as insecticidal as nicotine from tobacco, the only anti-phylloxera interplanting seems to have been new resistant rootstocks to eventually take the place of the old. In essence, a concession of failure and a starting over with new rootstock (and pulling out the old phylloxera-infested vines).

Like Mr. Casanova in nineteenth century France, the modern Chinese researchers started out with a watery solution containing tobacco; but in a bit more scientific fashion with controlled tests of the tobacco solution on young greenhouse-grown grape vines. “The results showed that aqueous extracts of tobacco had certain alleviating effects on phylloxera infection,” according to a 2014 abstract from the journal Acta Entomologica Sinica. “Both the aqueous extracts of tobacco at the concentration of 20 mg/mL and 50 mg/mL had an inhibition to phylloxera infection,” with a 50% reduction in phylloxera infection within 3 weeks (along with a reduction of fungal invaders that kill injured grape roots).

Chinese tobacco-grape laboratory and field studies were also reported in the Journal of Integrative Agriculture in 2014. The lab studies indicated that tobacco extracts in water were indeed a valid herbal (botanical) remedy against phylloxera aphids. In three years of field tests with tobacco interplanted in infested grape vineyards, phylloxera infestations of grape roots steadily decreased each year. “Tobacco was used as the intercropping crop because it includes nicotine, which is a source of bio-insecticides,” said the researchers. “The production of new grape roots was significantly higher in the intercropping patterns than in the grape monoculture in 2010, 2011 and 2012, and the vines gradually renewed due to the continuous intercropping with tobacco over three years…The results indicated that the secondary metabolites of tobacco roots had released to soil and got to the target pest.” Tobacco intercropping effects on grape plants was also measurable in terms of “cluster number per plant, cluster weight, cluster length, cluster width, berry number per cluster, mean berry diameter in the mid portions of the cluster, carbohydrate content, fruit color index, leaf width and branch diameter.” The researchers expect that this “Successful intercropping with tobacco” will stimulate more research with other insecticidal plants to disinfest vineyard soils.

We could probably end the blog item here, or have a second article as part II, but we have some interesting interactions among sagebrush and tobacco plants that can spillover to grape vineyards. Oddly enough, sagebrush and tobacco seem to get along very well. According to M.E. Maffei, writing in the South African Journal of Botany: “Aerial interaction of the wild tobacco (Nicotiana attenuata) and sagebrush (Artemisia tridentata subsp.) is the best-documented example of between-plant signaling via above-ground VOCs (Volatile Organic Compounds) in nature.” Wounded or “Clipped sagebrush emits many volatiles, including methyl jasmonate, methacrolein, terpenoids, and green leaf volatiles.” These sagebrush volatiles (VOCs) stimulate nearby tobacco plants to become less hospitable to caterpillar pests (fewer in number). The process is called priming and results in plants producing more chemicals deleterious to pests. For readers desiring all the details and more theory: In 2006, Kessler et al. published in a journal called Oecologia under the title “Priming of plant defense responses in nature by airborne signaling between Artemisia tridentata and Nicotiana attenuata.”

Big Sagebrush, known scientifically as Artemisia tridentata, is a native North American plant that can reach 4 meters in height and live from 30 to over 200 years in arid desert environments by using hydraulic lift to pump water from deep soil layers. The plants are a rich and underutilized source of medicinal compounds, insecticides, fungicides, natural preservatives, etc. Worldwide there are at least 500 Artemisia sagebrush species, many used in traditional medicines (e.g. China), cosmetics, insect repellents, and as spices and flavorings in foods. For example, Artemisia annua has attracted attention to combat malaria. Readers desiring a crash course in Artemisia species and their bio-active essential oils will find it online in an excellent 24-page review article in a journal called Molecules.

Big Sagebrush is “found in arid regions of North America from steppe to subalpine zones, dry shrub lands, foothills, rocky outcrops, scablands, and valleys,” wrote Christina Turi and colleagues in 2014 in the journal Plant Signaling & Behavior. “Traditionally, species of Big Sagebrush have been used as a ceremonial medicine to treat headaches or protect individuals from metaphysical forces. A total of 220 phytochemicals have been described in A. tridentata and related species in the Tridentatae. Recently, the neurologically active compounds melatonin (MEL), serotonin (5HT), and acetylcholine (Ach) were identified and quantified.” In other words, sagebrush plants and human brains and nervous systems have a lot in common.

Indeed, galanthamine, a botanical drug treatment for mild to moderate Alzheimer disease, can also be used to “treat” sagebrush. Galanthamine, which is named after the snowdrop plants (Galanthus species) where it was discovered, is also found in Narcissus and other common bulbs. Galanthamine is, according to researchers Turi et al., “a naturally occurring acetylcholinesterase (AchE) inhibitor that has been well established as a drug for treatment of mild to moderate Alzheimer disease.” Why bulb plants produce chemicals affecting both Alzheimer disease (human nervous systems) and sagebrush plants is a good question. One theory is that plants release these chemicals into the environment to communicate with and influence the behavior of other plants, and also perhaps deter or otherwise influence herbivorous animals. Environmentalists, overly preoccupied with worries about carbon dioxide and GMOs, might ponder the fact that human chemicals with medicinal effects released into the environment might be the bigger threat, affecting plants and ecosystems in ways not yet fully appreciated that may comeback to bite us.

The Western USA is known for its vast expanses, perhaps 50 million acres with Big Sagebrush, some of which is being displaced for vineyards in isolated valleys in the Pacific Northwest. I particularly like the description of the Big Sagebrush ecosystem at the Sage Grouse Initiative: “To many of us, sagebrush country symbolizes the wild, wide-open spaces of the West, populated by scattered herds of cattle and sheep, a few pronghorn antelope, and a loose-knit community of rugged ranchers. When you stand in the midst of the arid western range, dusty gray-green sagebrush stretches to the horizon in a boundless, tranquil sea. Your first impression may be of sameness and lifelessness—a monotony of low shrubs, the over-reaching sky, a scattering of little brown birds darting away through the brush, and that heady, ever-present sage perfume.”

About 90% of the native sagebrush steppe habitat in the eastern Washington grape growing area was removed to make way for the vineyards. But the 10% remaining sagebrush habitat may have important ecological benefits, such as improved natural or biological pest control in the vineyards. One suggestion is to leave some of the native Big Sagebrush around vineyards, for its beneficial ecological effects. “Perennial crop systems such as wine grapes have begun using cover crops and hedgerows to increase beneficial insects and promote sustainable vineyard management in areas like New Zealand and California,” Washington State University researcher Katherine Buckley told the 2014 Entomological Society of America (ESA) annual meeting in Portland, Oregon. “However, in arid wine growing regions such as eastern Washington, cover crops are often prohibitively expensive due to water costs. We wanted to determine if native plants, which require little or no irrigation, could be used to increase beneficial insects and enhance conservation biological control of vineyard pests in eastern Washington.”

The native sagebrush steppe ecosystem has a wide range of plants, but is characterized by species such as big sagebrush (Artemisia tridentata), rabbitbrush (e.g. Chrysothamnus, Ericameria spp.), bitterbrush (Purshia spp.) and perennial bunchgrasses (e.g. Agropyron, Stipa, Festuca, Koeleria, Poa spp.). The Big Sagebrush ecosystem is richer in species than meets the eye at first glance. Over 100 species of birds (e.g. sage grouse, sage thrasher, sage sparrow and Brewer’s sparrow) forage and nest in sagebrush communities, and they could provide a lot of insect biocontrol at less cost and with less environmental impact than chemical sprays.

A U.S. Forest Service report called Big Sagebrush a keystone species and “a nursing mother” to “31 species of fungi, 52 species of aphids, 10 species of insects that feed on aphids, 42 species of midges and fruit flies that induce galls, 20 species of insects that parasitize the gall inducers, 6 species of insects that hibernate in big sagebrush galls, 18 species of beetles, 13 species of grasshoppers, 13 species of shield-back katydids, 16 species of thrips, 74 species of spiders, 24 species of lichens, 16 species of paintbrushes, 7 species of owl-clovers, 5 species of bird’s beaks, 3 species of broom rapes, and a host of large and small mammals, birds, and reptiles.”

“After locating vineyards with some form of native habitat restoration in four different growing regions of eastern Washington, yellow sticky traps and leaf samples were used to monitor beneficial and pest insect numbers in the habitat restored vineyards and nearby conventional vineyards over a three year period,” said Buckley. The native plants, which are adapted to the region’s hot summers and cold winters, are home to at least 133 insect species. Native habitat vineyards had fewer pest insect species; and higher populations and a higher diversity of beneficial insects. Anagrus wasps, which are known to parasitize pesky grape leafhoppers, were most abundant in Big Sagebrush. More amazingly, this leafhopper biocontrol wasp was found year-round in Big Sagebrush, even when the plant was not flowering. No other plant, not even the photogenic wild roses planted at the end of vineyard rows and admired by tourists, hosted the tiny leafhopper biocontrol wasp year-round.

Garden herbs such as thyme (Thymus ssp.), mugwort (Artemisia ssp.) and fennel (Foeniculum ssp.) have all been tested in vineyard interrows because they are fungicidal against Botrytis cinerea, a fungus attacking grape clusters, and boost soil micro-nutrients like copper, manganese and zinc. Maybe at some point in time, the Chinese interplantings of tobacco and alternating strips of Big Sagebrush (or other Artemisia species) and garden herbs will all get integrated together with other cover crops and native hedgerows into grape vineyards for a more biological or natural approach to agriculture. With sagebrush and tobacco, we have only scratched the surface of vineyard possibilities.


Silicon Bed Bug Weaponry

May 4, 2015

BED BUGS CAN be spiked and trapped by tiny spears like leaf hairs, and can become dehydrated or dessicated and rendered harmless by certain forms of silicon, the second most abundant element in planet Earth’s crust (28%) after oxygen (47%). That silicon can be the bane of bed bugs is indeed odd when one considers that silicon permeates our world from beach sands, opals, agates and quartz crystals to sandpaper, semiconductors, glasses, ceramics, optical fibers and cosmetic products. Indeed, the famous French scientist and silkworm entomologist, Louis Pasteur, whose name has become synonymous with the germ theory of medicine, predicted silicon’s eventual service in human medicine; though Pasteur was probably not thinking along the lines of silica gels and desiccant diatomaceous earth dusts as remedies for the 21st century’s worldwide medical plague of bed bugs.

Despite its commonness in nature and the human environment and potential uses in human medicine, the use of silicon products comes with caveats to users, who might want to wear sufficient protective clothing and respirators to avoid inhaling the products. Strangely enough, that much maligned metabolic waste product, carbon dioxide, which along with sunlight is essential to photosynthesis and life on planet Earth, is perhaps a safer component (e.g. as a lure or attractant) when integrated into bed bug traps. Food grade diatomaceous earth made from freshwater diatoms is considered relatively nontoxic; whereas filtering grade diatomaceous earth (e.g. the type used for swimming pool filters) is a crystalline form with inhalation toxicity.

“Louis Pasteur (1822-95) said that silicon would prove to be a treatment for many diseases and in the first quarter of the twentieth century there were numerous reports by French and German doctors of sodium silicate being used successfully to treat conditions such as high blood pressure and dermatitis,” wrote British chemist John Emsley in his superb compendium, Nature’s Building Blocks (An A-Z Guide to the Elements). “By 1930, such treatments were seen to have been in vain and the medication fell out of favor. So things rested, until the discovery that silicon might have a role to play in human metabolism, and then followed suggestions that it could have a role in conditions such as arthritis and Alzheimer’s disease, but no new treatment based on these suggestions has yet emerged. Meanwhile, silicon continues to be linked with a disease of its own: silicosis. Miners, stone-cutters, sand-blasters and metal-grinders develop this lung condition which is a recognized occupational disorder caused by the inhalation of minute particles of silica…” Symptoms include coughing, wheezing and shortness of breath; a more aggressive form of silicosis associated with certain types of asbestos can develop into lung cancer and has been a rich source of litigation for occupational exposure in the USA.

While silica products should be used sparingly (a caution that should also apply to most sprays) or not at all by some people (e.g. existing respiratory problems; perhaps seek a medical opinion before using), they might prove for many others the tipping point for winning the bed bug war as part of an integrated approach that controls bed bugs (many of which are pesticide resistant) using a multiple arsenal of weapons including herbal oils, clutter reduction, heat, sealing crack and crevice harborages, traps, pheromones, carbon dioxide, vacuuming under baseboards, etc.

At the 2014 Entomological Society of America (ESA) annual meeting, Kyeong-Yeoll Lee of South Korea’s Kyungpook National University (Daegu) reported that silica in the form of diatomaceous earth (Perma-Guard(TM) or Fossil-Shell(R)) acted as a synergist when heat (hot air) fumigations substituted for chemical fumigants such as methyl bromide. Though the test insect was Indian meal moth, a worldwide pest of stored grain and many other packaged agricultural products, it would not be surprising to find that heat treatments combined with silica products like diatomaceous earth will also prove efficacious and perhaps also synergistic against bed bugs. Indeed, heat treatments may induce bed bugs to move around more, which could hasten contacting diatomaceous earth and water loss.

At the same 2014 ESA meeting, Virginia Tech (Blacksburg, VA) researcher Molly Stedfast provided some impressive results via the time-consuming process of first educating apartment residents about bed bugs and then painstakingly vacuuming along baseboards to suck up as many bed bugs as possible before applying the silica products under the baseboards to further reduce bed bug populations. This integrated (IPM; integrated pest management) approach required quite a bit of manual labor, as furniture had to be moved to gain access to the baseboards before vacuuming and then applying silica gel or dust products.

Stedfast tested two silica products, Mother Earth(TM) D, a highly-absorptive desiccant dust made from 100% freshwater diatomaceous earth, and CimeXa(TM) Insecticide Dust, a 100% amorphous silica gel. The silica dust or gel injures the insect cuticle (outer protective “skin”), letting water leak out and leading to dehydration (providing relative humidity is not extremely high, above 81%; and free water is unavailable). Both the diatomaceous earth and silica gel products were “very effective at killing bed bugs even at 10% of the label rate.” Going above the label rate was a waste of resources, as only so much product can contaminate the bed bugs. Bed bugs can die within 24 hours of contacting the silica products, but air currents that blow the dusts around can be a problem; also the products need to stay moist and not dry out to be effective. Among Stedfast’s biggest headaches is the application equipment, which was not very robust.

The patent literature reveals that inventors such as Roderick William Phillips in Vancouver are working on improved spray apparatuses for applying diatomaceous earth: “There is disclosed a spray apparatus for holding contents comprising diatomaceous earth and a compressed propellant for propelling the diatomaceous earth. There is also disclosed use of diatomaceous earth to control a population of bedbugs…diatomaceous earth, a naturally occurring siliceous sedimentary rock that includes fossilized remains of diatoms. However, known methods of applying diatomaceous earth can be cumbersome. For example, known methods of applying diatomaceous earth may undesirably require handling the diatomaceous earth, for example to transfer the diatomaceous earth from a container not having an applicator to a separate applicator apparatus. Also, known applicator apparatuses may apply diatomaceous earth unevenly, which may be wasteful or ineffective. In general, known methods of applying diatomaceous earth may be sufficiently complex so as to require professional involvement, which may undesirably add to cost and delay of bedbug treatment. Also, numerous types of diatomaceous earth are available, and different types of diatomaceous earth vary widely and significantly from each other. It has been estimated that there are approximately 100,000 extant diatom species…and may vary widely and significantly in size and shape across a very large number of diatom species…”

At the University of British Columbia (Vancouver), Yasmin Akhtar and Murray Isman demonstrated that both diatomaceous earth and herbal or botanical compounds such as neem, ryania and rotenone are to varying degrees transported by adult bed bugs and contaminate other adults and younger bed bug nymphs. “Our data clearly demonstrate horizontal transfer of diatomaceous earth and botanical insecticides in the common bed bug,” said Akhtar and Isman. “Use of a fluorescent dust provided visual confirmation that contaminated bed bugs transfer dust to untreated bed bugs in harborage. This result is important because bedbugs live in hard-to-reach places and interaction between conspecifics can be exploited for delivery and dissemination of management products directed at this public health pest…This result is important because bedbugs live in hard-to-reach places (cracks, crevices, picture frames, books, furniture) and as such interaction between the members of the colony can be exploited for delivery and dissemination of control products.”

At the 2014 ESA annual meeting, Akhtar suggested protecting travelers and suppressing bed bug transit by building diatomaceous earth into luggage, mattresses and fabrics. Diatomaceous earth provided 96% repellence; bed bug mortality was zero at 24 hours, but 93% after 120 hours. Diatomaceous earth could also be applied to box springs, dressers and headboards, and under carpets and inside drywall. A diatomaceous earth aerosol provided 81% bed bug mortality at 30 days, and was still active and being transferred from dead bed bugs to live bed bugs.

Diatom species mined for diatomaceous earth are stunning in their architectural variety and beauty. Ultimately, the silicon secrets of living diatoms has the potential to transform “the manufacture of siloxane-based semiconductors, glasses, ceramics, plastics, elastomers, resins, mesoporous molecular sieves and catalysts, optical fibers and coatings, insulators, moisture shields, photoluminescent polymers, and cosmetics,” wrote UCSB marine scientist Daniel E. Morse. “The manufacture of these materials typically requires high temperatures, high pressures or the use of caustic chemicals. By contrast, the biological production of amorphous silica, the simplest siloxane [(SiO2)n], is accomplished under mild physiological conditions, producing a remarkable diversity of exquisitely structured shells, spines, fibers and granules in many protists, diatoms, sponges, molluscs and higher plants. These biologically produced silicas exhibit a genetically controlled precision of nanoscale architecture that, in many cases, exceeds the capabilities of present-day human engineering. Furthermore, the biological productivity of siloxanes occurs on an enormous scale globally, yielding gigatons per year of silica deposits on the floor of the ocean. Diatomaceous earth (composed of the nanoporous skeletons of diatoms) is mined in great quantities from vast primordial deposits of this biogenic silica.”


Herbal Oils Blast Bed Bugs

March 28, 2015

HERBAL OILS such as NEEM can reduce bed bug populations when integrated with other pest control technologies such as traps. As desperation hits with more bed bug populations resistant to more conventional synthetic pesticides, more herb and essential oil formulations and fumigations, as well as silicon dioxide-based gels and dusts such as diatomaceous earth, are being integrated with other bed bug remedies such as clutter reduction and heat fumigation.

Those in thrall to chemical industry protocols adhere to the standard that a remedy must kill 95% in laboratory tests. But it is most often a hypocritical standard, as over time bed bugs are almost guaranteed to become genetically selected for resistance to widely used synthetic pesticides. According to Virginia Tech researchers: “A frightening resurgence of bed bug infestations has occurred over the last 10 years in the U.S. and current chemical methods have been inadequate for controlling this pest due to widespread insecticide resistance…While DDT was initially effective for bed bug control, resistance to the cyclodienes was well documented among different bed bug populations by 1958…bed bugs had developed resistance to organophosphate insecticides, including malathion by the 1960s…While there have been many hypotheses regarding the cause of the bed bug resurgence, the cause is at least partially explained by bed bug resistance to insecticides, in this case, those in the pyrethroid class,” including deltamethrin resistance in New York City bed bugs.

To that conclusion, I would add “over-reliance on synthetic chemical pesticides” to the exclusion of designing habitations to be inhospitable to bed bugs and alternative control methods. Oddly enough, herbal remedies not killing 95% are often subject to persecutory calls of marketplace banishment by the EPA, FDA, FTC or one of the myriad other USA.gov regulatory bureaucracies. An Alternative in the Internet age is letting people decide for themselves via Internet search engines before buying. To some extent, government regulation of herbal pest control efficacy is unnecessary when scientific test results can be posted on the Internet and debated.

An integrative approach can make excellent use of herbal remedies providing perhaps 40% or 60% bed bug reduction; in conjunction with heat treatments, sharp silicon dioxide crystals and other remedies that collectively might add another 30%, 40% or 50% bed bug reduction. It’s all mathematics, which many people hate; but nonetheless a 60% bed bug reduction from an herbal remedy combined with a 40% reduction from clutter reduction, heat fumigation or traps can easily equal over 95% control (the laboratory standard adhered to by those one-trick chemical ponies sometimes called “nozzle heads”).

In other words, herbal oils and other alternative treatments can leverage themselves when intelligently combined with other pest control methods such as heat, clutter reduction and traps. That should be intuitive, but it runs counter to the entomology training of the average PhD in the USA. The late “Professor (Robert) van den Bosch of the University of California was one of the developers of Integrated Pest Management” (IPM) and an advocate of biological controls; and he made the case for a multi-faceted approach to cotton and food crop pests long ago in books like The Pesticide Conspiracy (University of California Press).

Bed bugs and the urban environment of hotels, apartments, cracks, crevices, mattresses, trains, buses, backpacks and luggage of course present a different set of problems than a homogeneous field of crops or a laboratory spray arena. But you be the judge of whether herbal fumigations work against bed bugs: At the Entomological Society of America annual meeting, Korean researcher Jun-Ran Kim (Rural Develop Admin, Suwon-si Gyeonggi-do, South Korea) compared 120 herbal or botanical essential oils to the best conventional pesticides for controlling insecticide-susceptible and insecticide-resistant adult bed bugs hiding in protected places (as bed bugs do; e.g. cracks, crevices, inside electrical sockets).

Kim singled out two essential oils, those from peppermint (Mentha piperita) and myrtle (Myrtus communis) plants, as most effective and worth further development as bed bug fumigants. So, should the headline read: “Essential Oils a Failure as Bed Bug Fumigants,” as 118 of 120 essential oils did not make the cut. Indeed, fewer than 2% of the botanical oils tested, peppermint and myrtle, were singled out as potential bed bug fumigants. Or should the headline read: “Essential Oils Effective Bed Bug Fumigants,” or “Peppermint and Myrtle Oils Prove Essential Oils Can Work as Bed Bug Fumigants.”

Rue, an ancient herb, needs to be tested against bed bugs. Natural products researchers report: “An infusion of Ruta chalepensis leaves rubbed onto skin has been purported to be repellent to mosquitoes and other insects by farmers and shepherds in rural and mountainous areas of Marche and Latium, Central Italy. In the same Italian countryside, Ruta graveolens leaves were set under the bed to repel bugs and mice (Guarrera 1999). A decoction of Ruta species also has been used topically against scabies, lice, and fleas, to repel insects and to treat intestinal worms in livestock.”

Intriguingly, rather than following up on rue under the bed to fight bed bugs, Italian researchers veered off in another direction: Rue, as a sustainable weed control alternative for corn field weeds such as purslane and pigweed: “Poisonous plants are neglected sources of natural herbicides. An infusion of such a plant rue (Ruta graveolens L.) was tested…rue infusion (100 g/l) and its isolated allelochemicals…open up a promising avenue in the search of natural herbicides.”

Other researchers envision the disease-fighting properties of herbs such as rue and powders such as sodium bicarbonate (baking soda or bicarbonate of soda) being harnessed as alternatives to synthetic fungicides. Indeed, in organic and sustainable conventional farming, rue “at low rates…may lessen the onset of fungicide resistance” against powdery mildew, brown spot and other plant diseases in diverse crops, including strawberries.

Italian researcher Giovanni Aliottal and colleagues in a paper titled “Historical Examples of Allelopathy and Ethnobotany from the Mediterranean Region,” write: “Ruta graveolens L. (Rutaceae), or common rue, originating in Southern Europe, is an evergreen shrub with bluish-green leaves that emits a powerful odour and has a bitter taste. The plant is cited in the ancient herbals and has deep roots in folklore, alchemy and even demonology. Rue has been regarded from the earliest time as successful in warding off contagion and preventing the attacks of fleas and other noxious insects. The name rue derives from the Greek “reuo” (= to set free), because the plant is efficacious in various diseases. Rue was the chief ingredient of the famous antidote to poison used by Mithridates. It was also known to produce erythema and pustular eruptions on human skin. Many remedies containing rue as well as its abortive properties were mentioned by Pliny the Elder in his Naturalis Historia (XX, 143). In Europe, rue was considered a powerful defense against witches during the Middle Ages. Piperno, a Neapolitan physician, in 1625, recommended rue as a treatment for epilepsy and vertigo. Today, the aerial parts of the plant are eaten in Italian salads, and are said to preserve the eyesight. Rue is currently mentioned in the pharmacopoeias of 28 countries where it is considered mainly as a stimulating, antispasmodic, diuretic and emmenagogue. Moreover, fresh and dried leaves are used to preserve and to flavour beverages and foods such as liquor (grappa) and wine, cheese and meat.”

Ruta graveolens is the scientific name for garden rue or herb-of-grace, one of about 1,500 species in the plant family Rutaceae (includes oranges, lemons, other citrus). A native of the Balkans and southeastern Europe grown worldwide, rue is known as sudab or sadab in India, arvada in Tamil, aruda in Singhalese, gedung minggu in Javanese and geruda in Malay. Ruta chalepensis is the scientific name for fringed rue, Aleppo rue or Egyptian rue. Rue researchers D. H. Tejavathil and B. L. Manjula in India summarize: “Ruta graveolens L., a member of Rutaceae, is well known for its wide utilities such as ornamental, aromatic and culinary in addition to medicinal properties. Medicinal value of this taxon is attributed to the accumulation of flavonoids, furanocoumarins, acridine alkaloids, furanoquinolins and also essential oils which led to its recognition as one of the sought after traditional medicinal plants by pharmaceuticals.” Perhaps a bit dangerous, too; according to Egyptian researchers: “On moist skin in direct sunlight, it leads to photosensitivity. The essential oil is a central nervous system depressant and at high doses has become a narcotic.”

A major rue essential oil component, 2-undecanone, is nicely summarized in wikipedia: “2-Undecanone is used in the perfumery and flavoring industries, but because of its strong odor it is primarily used as an insect repellent or animal repellent. Typically, 1–2% concentrations of 2-undecanone are found in dog and cat repellents…” According to its web site claiming “invention” by Dr. R. Michael Roe and referencing 3 patents: “North Carolina State University is currently seeking an industry partner to commercialize a novel, natural insect repellent for mosquitoes, ticks, chiggers, bedbugs, house dust mites, cockroaches, and other pests…A researcher at North Carolina State University has discovered that undecanone and related structures are repellents of mosquitoes, ticks, bed bugs, cockroaches, thrips, aphids, deer flies, gnats and other animals. In some tests, these compounds were found to be more effective than DEET…”

The Flowers of Chania web site provides a nice overview of rue species used as medicine in Crete, grown in Netherlands botanical gardens, and mentioned in Shakespeare’s Hamlet. Unlike the Balkan bean leaf remedy for spearing bed bugs, which has recently sparked the interest of those desperate for bed bug remedies, medicinal plants in the rue family known since ancient times have escaped scientific scrutiny against bed bugs. Probably much to the delight of bed bugs worldwide. According to researchers in India, “The most frequent intentional use of the plant has been for induction of abortion.” If only that powerful rue activity could be integrated to naturally abort bed bug populations just enough to allow humans a more bite-free sleep.

On the Internet are a varied array of commercial products with herbal essential oil and soap (detergent) ingredients sold for potential use against bed bugs (and usually other pests, as well). The herbal ingredients do not need extensive safety testing, as they are GRAS (Generally Recognized as Safe) substances commonly found in foods, cosmetics, etc.

According to the USA FDA (Food and Drug Administration) web site: ““GRAS” is an acronym for the phrase Generally Recognized As Safe. Under sections 201(s) and 409 of the Federal Food, Drug, and Cosmetic Act (the Act), any substance that is intentionally added to food is a food additive, that is subject to premarket review and approval by FDA, unless the substance is generally recognized, among qualified experts, as having been adequately shown to be safe under the conditions of its intended use, or unless the use of the substance is otherwise excluded from the definition of a food additive. Under sections 201(s) and 409 of the Act, and FDA’s implementing regulations in 21 CFR 170.3 and 21 CFR 170.30, the use of a food substance may be GRAS either through scientific procedures or, for a substance used in food before 1958, through experience based on common use in food.”

In other words, if there is a long tradition of eating the stuff and smearing it on your body, it is likely not to need hundreds of millions of dollars and decades of testing and regulatory agency compliance like a pharmaceutical product. So, you don’t have to wait 15 years for a bed bug remedy that will be several times more costly (to recoup the regulatory expenses) than what is already available. Being publicly sold on the Internet, samples of these GRAS pesticide products can often be obtained free of charge by researchers for scientific studies. Sometimes the studies, even if taxpayer or public funded, are published in respected commercial journals and hidden from public perusal behind formidable paywalls. But Internet search engines can usually at least turn up abstracts, media reports and summaries of varying quality and usefulness.

Rutgers researchers compared 11 herbal and detergent products (e.g. Sodium Lauryl Sulfate) and two synthetic pesticide products against bed bugs. A nice summary by the researchers published in an industry trade publication and titled “Natural Pesticides for Bed Bug Control: DO THEY WORK?” was made freely accessible via the Internet. Bed bugs were placed in laboratory chambers offering no escape from spray contact; a valid approach for most product comparisons. But given that many bed bug populations are pesticide resistant and that in real rooms bed bugs hide and avoid spray contact, real world results are usually lower than the lab numbers. These are more or less truisms, for both botanical and synthetic pesticide products. Which is why pest control operators often are called back to spray multiple times over several months or years; and why you need an integrative approach (relying on more than just sprays) and plenty of patience to rid yourself of bed bug infestations. A quick overview of integrative bed bug alternatives with a resource list is found in the Jan. 2015 issue of the IPM Practitioner (as of this writing, still available for free Internet download).

According to the Rutgers researchers, Temprid SC [Imidacloprid (21%) and Beta-Cyfluthrin (10.5%)] killed 100% of exposed adult bed bugs coming in contact with the spray in three days, and “was significantly more effective than Demand CS” [Lambda-Cyhalothrin (9.8%)]. The best herbal formulations were a bit slower: “EcoRaider and Bed Bug Patrol were the most effective biopesticides in both tests. EcoRaider [Geraniol (1%), Cedar Extract (1%) and Sodium Lauryl Sulfate (2%)] caused 100 percent mortality after 10 days in both tests. Bed Bug Patrol [Clove Oil (0.003%), Peppermint Oil (1%) and Sodium Lauryl Sulfate (1.3%] caused an average of 92 percent and 91 percent mortality after 10 days in the first and second experiment, respectively. Neither of these two products caused more than 75 percent mortality at three days after treatment…Bed Bug Bully [Mint Oil (0.25%), Clove Oil (0.3%), Citronella Oil (0.4%) and Rosemary Oil (0.4%)] caused 60 percent mortality after 10 days.”

Thus, the need for a patience and a multi-faceted, integrative approach to bed bug control using herbal or synthetic pesticides, tiny leaf hair-like spikes, CO2, traps, heat, cold, steam, mattress encasements, vacuuming, pheromones, clutter reduction, diatomaceous earth, silica gels, etc. If winning the war against bed bugs were easy, the insects would have been extinct long ago and you would not be reading this.


Termite Power! (Green/Alternative Energy)

February 25, 2015

TERMITE BIOMASS ENERGY conversion offers a potential 95% to 99% efficiency in converting woody plants into usable energy forms comparable to ethanol fuels and petroleum products. “Termites are regarded as harmful because of the ability to decompose cellulosic materials such as houses made of wood,” said University of the Ryukyus (Okinawa, Japan) researchers Toru Matsui, Gaku Tokuda and Naoya Shinzato in the journal Recent Patents on Biotechnology. However, “Termites and/or their symbionts (e.g. gut protozoa & bacteria) are potentially good resource of functional genes for industrial applications…for biomass utilization, environmental remediation, and fine-chemicals production.”

Several termite genes have already been patented for biofuel (cellulase) and fighting infections (antimicrobial peptides). Combinations of cellulase enzymes and anaerobic symbionts have also been harnessed to produce hydrogen fuel (H2 gas) from waste plastics. “Lignin treatment by anaerobic bacteria from the gut of” several termite species has also been patented; thus pointing towards a greener pathway in place of today’s less environmentally-friendly caustic chemical processes. Termite energy production mechanisms might also be released as Open Source scientific information, instead of patented, as was once common in the scientific world. Indeed, the real practical innovations for sustainable world energy production may be in turning the raw material of biological science basic research into economical applied chemical engineering and bio-engineering solutions. In other words, a new energy production landscape dotted with bio-refineries approaching the 95% to 99% energy conversion efficiency of termite guts digesting woody plant and fiber materials is an objective worth working towards.

Being an ancient insect order, termites have been tapping into Earth’s abundant woody plant resources for perhaps 400 million years; well before dinosaurs and then humans roamed and pillaged the planet. “Cellulose is the most abundant biomass on the earth,” write the Ryukyus researchers. “Termites thrive on plant biomass, in which the major constituents are cellulose, hemicellulose (i.e. non-cellulosic carbohydrates), and lignin…In addition, it can be hydrolyzed to give a sugar pool which can be subsequently fermented to form ethanol, etc. However, the crystalline nature of cellulose had made it difficult to economically convert into useful chemical feedstocks…Other than cellulosic materials decomposition, there could be symbionts degrading lignin-derived compounds, a significant part of the wood constituents.”

At the hops-soaked Entomological Society of America (ESA) annual meeting in Portland, Oregon, the parallels between microbrewing (hops & microbes), baking (yeasts; Voodoo donuts) and termite guts as fermentation vats (bio-refineries) producing energy fuels was bubbling just below the surface. Several research labs, including Michael Scharf’s Purdue University lab, are evaluating the genes and metabolic processes innate to termites as well as the contributions of protozoa, bacteria and other microbes living as symbionts in termite guts and helping digest plant lignins and cellulose into usable energy compounds. Figuring out how termites and their gut microbes are such efficient converters of plant matter into energy is a huge undertaking, even with the latest DNA and genetic tools.

Brittany Peterson, an ESA termite biofuel presenter working in Scharf’s lab writes on her web page about “the co-evolution of termites and their over 4,000 symbiotic microorganisms.” The implication being that the termite hindgut is a bio-refinery where termites and their microbial symbionts constitute the equivalent of a vast unknown ecosystem whose parameters are just now being delimited. Peterson and the Scharf lab view termite guts as a model system for studying synergy and biomass processing of tough toxins like lignin. In other words, as the basis and inspiration for designing green bio-refineries for alternative energy and feedstock production processes more energy efficient than turning food crops like corn into ethanol fuel.

Of course, this means figuring out exactly how termites and their several thousand hindgut microbes extract simple sugars from wood’s complex lignin-cellulose polymer structure. This termite/microbe “digestion” (or depolymerization) has an amazing 95%-99% efficiency that industrial biomass processing or biofuel production cannot match even using very toxic caustic chemistries. Most research on termite gut microbes has focused on protozoa, but Peterson envisions adding bacteria and termite-produced enzymes to create a synergistic bio-refinery mixture. In other words, replacing current caustic and energy inefficient biomass conversion chemistries with greener, more energy efficient biological technologies composed of termite-derived enzymes, bacteria and protozoa to depolymerize biomass and produce usable sugars/energy.

The synergy of termite (host) and gut microbes likely makes possible the observed over 95% lignin-cellulose biomass processing efficiency; 82% of the genes for lignin-cellulose processing, including high expression of cellulase enzymes, come from or are innate to the termite itself rather than the symbiotic gut microbes, Peterson told the ESA annual meeting. Though the termite-microbe synergism boosts the the energy efficiency to quite high levels approaching 100%. At least for woody materials.

Interestingly, though, when termites eat paper, most of the biomass processing genes come from the gut microbes. Thus, a quite complex digestive ecosystem that seems to vary greatly with the food (feedstock) input. The gut microbes also help termites detoxify harmful materials and provide antioxidant protection. Scientific bioassays using various combinations of antibiotic drug treatments and anti-protozoa diets are enabling the Scharf lab to construct a microbial “library” for continuing research, Peterson told the ESA. Recent experiments with bacteria isolated from the subterranean termite Reticulitermes flavipes, indicate that the bacteria either alone or via interaction with protozoa boost glucose (sugar; an energy feedstock) release from lignin-cellulose (plant) biomass.

In the future, it is conceivable that bio-refineries using termite enzymes, bacterial enzymes and protozoa will make today’s ethanol and biomass to energy conversion processes look like toxic, inefficient relics of a primitive industrial energy production past. But it will likely be many more years before bio-engineers and chemical engineers are ready to begin the commercial harvest of termite energy to power our vehicles, the Internet, etc.


Termites: Good Medicine (Antibiotic Alternatives)

January 2, 2015

[Note to Search Engines: This is Not Another Termite Poop Story.]
Antibiotic-Resistant Bacteria Beaten by Termite Innate Immune System (the science part)

Antiseptic procedures and germ theory, stuff now routine like doctors and nurses washing their hands to avoid contaminating patients, entered modern medicine via 19th-century applied entomology aimed at solving a mysterious silkworm population decline baffling Italy’s Agostino Bassi and France’s Louis Pasteur (See blog, The Mysteries of Colony Collapse). Today, Pasteur might be looking over the shoulder of Yuan Zeng in Xing Ping Hu’s Urban Entomology Lab at Auburn University, wondering how termites make themselves more robust and immune to disease. After working with silkworms and formulating modern germ theory, Pasteur realized that “the exclusive emphasis on the germ theory of contagious disease” was a very incomplete view of reality in need of modification; a radical notion that would be opposed by many in modern medicine even today, as germ theory has attained the status of orthodoxy and relegated the alternatives to the fringes.

Pasteur told colleagues that if he had the chance to go back to silkworm entomology again he would focus on nutrition, the environment and physiology (e.g. immunity) to increase robustness, vigor and disease resistance. Stuff that would be cutting edge in the 21st century. Stuff like termite entomologist Yuan Zeng’s study of how termite “innate immune systems” overcome MultiDrug Resistant (MDR) bacteria infecting over 2 million people annually in the USA. MDR bacteria in the USA annually kill over 23,000 “because they are untreatable with today’s drugs,” Zeng told the Entomological Society of America (ESA) annual meeting. MDR bacteria are also becoming “a significant global health threat.” An excellent YouTube video of Yuan Zeng describing her Auburn University research on termites defeating MDR bacteria is now available.

Zeng’s previous research with powdered extracts of Eastern subterranean termites (Reticulitermes flavipes) against bacteria causing human gastric distress lends credibility to traditional folk medicines containing insects. “Our previous research on disease resistance in R. flavipes workers showed that the crude extract of naive termites constitutively displayed a broad-spectrum antibacterial activity including agents responsible for human gastric infections,” Zeng told the ESA annual meeting. The logic behind using termites as medicines or drugs is that subterranean termites forage and nest in soil loaded with pathogenic microbes, making them a “source for novel antimicrobial discovery because they have evolved effective innate immune systems in confronting various harmful microorganisms.”

If a termite species is both pest and medical cure, then might an alternative to chemical fumigation be to harvest (e.g. trap or vacuum) the termites and sell them as a medicinal crop? That is a question that rarely, if ever, is asked. “Science has already proven the existence of immunological, analgesic, antibacterial, diuretic, anesthetic, and antirheumatic properties in the bodies of insects,” wrote Brazilian researcher Eraldo Medeiros Costa-Neto in an article titled ENTOMOTHERAPY OR THE MEDICINAL USE OF INSECTS. “Since early times, insects and the substances extracted from them have been used as therapeutic resources in the medical systems of many cultures. Commonly considered to be disgusting and filthy animals, many insect species have been used live, cooked, ground, in infusions, in plasters, in salves, and as ointments, both in curative and preventive medicines.”

Florida is the place where all the termites of the world seem to be coming to live. The Palm Beach, Florida, TV news recently warned of a Caribbean invasion of conehead or tree termites, known scientifically as Nasutitermes corniger. Conehead termites avoid competing with subterranean termites by building “beach-ball size” nests above ground and “brown tubes up the outside walls of houses,” and according to the TV make wood look like “shredded wheat.” Even “aggressive spraying” dating back to 2001 failed in its goal of eradication, and 100 million conehead termites nesting in 120 colonies amongst 42 properties were sprayed in 2012. Conehead termites, which are “distributed from southern Mexico to northern Argentina and the West Indies,” are “commonly used in traditional medicine in Northeast Brazil,” say scientists in Brazil. No doubt the coneheads will turn up again and again in Florida until they are finally accepted as residents. That is the nature of invasive insects.

Perhaps instead of chemical eradication programs, these termites should be harvested and exported to Brazil and elsewhere for medical use. “With the increase in microbial resistance to antibiotics, the use of natural products represent an interesting alternative for treatment,” wrote Henrique Coutinho and his Brazilian colleagues in an article titled “Termite usage associated with antibiotic therapy.” Crushed and powdered conehead termites mixed with a conventional antibiotic drug (which was failing, due to bacterial resistance) produced “a new weapon against the bacterial resistance to antibiotics” via a termite-drug synergy. In other words, mixing powered conehead termites with the drug made for a more powerful antibiotic medicine than using the antibiotic drug alone. At least the coneheads are good for something.

Yuan Zeng told the ESA and YouTube that she fed subterranean termites “sublethal concentrations of MultiDrug Resistant (MDR) pathogens, Methicillin-resistant Staphylococcus aureus (MRSA) or Pseudomonas aeruginosa (PAOl),” which induced “an alternation of protective proteins” produced by the termite’s innate immune system. “The composition changes of proteins following the feeding of MDRs significantly inhibited the growth of P. aeruginosa and MRSA,” said Zeng. “The results of this research could be a significant breakthrough for developing novel effective drugs” to fight human disease pathogens resistant to multiple antibiotic drugs. Worldwide, millions of people stand to benefit.

Known termite immune proteins include termicin, spinigerin, lysozome, tGNBPs, and “two unidentified proteins from several termite species with potent antibacterial and antifungal activities.” However, Zeng’s termite antimicrobial compounds are different; though there is still much scientific work to be done.

In the journal “Recent Patents on Biotechnology,” Japanese researchers Toru Matsui, Gaku Tokuda and Naoya Shinzato from University of the Ryukyus in Okinawa discussed patenting termite genes for alternative energy and drug production. “Although termites are regarded as harmful because of the ability to decompose cellulosic materials such as houses made of wood,” said Matsui et al. “Termites and/or their symbionts are potentially good resource of functional genes for industrial applications…for biomass utilization, environmental remediation, and fine-chemicals production.” Several termite genes have already been patented for biofuel (cellulase) and fighting infections (antimicrobial peptides).

A fungus-growing termite, Pseudacanthotermes spiniger, is notable for producing termicin, an antifugal peptide, and spinigerin, an anti-bacterial and antifungal peptide. “These peptides and the corresponding cDNAs have been patented as useful for protection of plants from pathogenic fungi or medical purposes,” said Matsui et al. “Similarly, some chemical antibiotic compounds isolated from termites have also been patented for the use of treating a microbial infection or disease.”

“Although entomotherapy is an ancient practice, it is still relatively unknown in the academic world,” wrote Costa-Neto. “In fact, as Holt already stressed in 1885, the advance of medical science and the suppression of folk knowledge swept away belief in the medicinal qualities of insects.”

Insect species outnumber plant species 16-fold, according to an article in The Indian Journal of Traditional Knowledge: “Yet very few researchers have concentrated on the medically useful properties of insects. Most research with insects revolves around getting rid of them.”

Medical Botany refers to plants used for medical or health purposes. But there is no entomological equivalent. Medical Entomology addresses arthropods as medical or pest problems; and by analogy is like Weed Science to Botany. Insects as medicinal cures or health enhancers are outliers, orphan science, folk healing curiosities; perhaps supermarket tabloid fodder alongside celebrity scandals and UFO abductions.

In South India winged subterranean termites (Odontotermes formosanus) are traditionally roasted in earthen pots and consumed for three evenings to treat asthma. But their anti-bacterial qualities have not been explored, “mainly because of the difficulty in harvesting large numbers.” Memo to South India: An abundance of potentially medicinal subterranean termites are ready for harvesting and roasting for export in south Florida, Hawaii, New Orleans, Auburn, Mississippi, etc. Perhaps in some distant future a doctor will say, “Take two powdered termites and some Vitamin C, and call me in the morning.”


Organic Dairies Suck Flies (CowVac)

December 5, 2014

Rest assured, a CowVac is not a veterinary vaccine of some sort that magically provides insect control or renders cows autistic. Rather, it is about producing organic milk and organic milk products like butter and yogurt. A CowVac is a suction or vacuum device incorporated into a larger trapping apparatus that removes blood-sucking flies that can be an even worse livestock plague than mosquitoes or ticks. Besides being bad economics (too expensive), pesticides repeatedly applied at ever higher doses quickly select for pesticide-resistant biting flies; i.e the flies become immune. Which is not to say that insects will not develop some ingenious solution, like holding on tighter, to avoid being sucked up by strong suction. But at least development of stronger suction devices and better ways to knock insects off animals would not add pesticide residues to the environment, food chain and human diets. A human equivalent, awaiting invention, would be an enclosure of some sort designed to knockoff and suck up (vacuum off) bed bugs before they bite (see previous blog, on bed bug desperation time innovative research).

“Seven years in the making: The Cow-Vac removes horn flies from dairy cattle” was the title of a special display at a members symposium “Honoring the Career and Contributions of Veterinary Entomologist Donald A. Rutz” at the Entomological Society of America (ESA) annual meeting in the beer brewing capital of the world, Portland, Oregon. On its web site, the Center for Environmental Farming Systems (CEFS) at North Carolina State University (NCSU) in Raleigh reports: “This innovative solution is now part of routine cattle management at the CEFS Dairy Unit and has allowed the herd to be insecticide-free for 5 years.” In other words, this “alternative fly management system” designed by Steve Denning and D. Wes Watson demonstrated “the feasibility of producing organic milk.”

“The trap removed between 1.3 and 2.5 million flies annually from the research station cattle,” Denning and Watson reported to the ESA in Portland. “Prior to the installation of the trap in 2007, the cattle routinely had horn fly populations above 1000 flies per animal and would require insecticide applications for horn fly control. With a vacuum trap in place, dairy cattle at CEFS have not required or have been treated with an insecticide.” With each of the thousand horn flies sucking blood 10-12 times per day, the blood loss and associated problems were huge (USA estimated losses are over $2.26 billion per year), and organic animal agriculture was considered questionable.

“The first walk-through pasture fly trap consisted of a covered structure designed to brush flies from the animals as they passed through, with the fleeing flies captured in the screened hollow walls,” reported Denning and Watson at the ESA meeting in Portland. “Modifications to the Bruce trap have been introduced over the years. These modified traps employ the same basic mode of action; curtains to dislodge flies and light, either natural or fluorescent, to attract flies to a cage, or bug zapper. In addition to curtains, the CowVac uses air pressure to dislodge flies, and vacuum to capture flies, trapping them in a chamber until death.” So far, the Animal Rights movement has yet to recognize a right to food (animal blood, in this case) for biting flies (also animals); and the flies die a natural death from lack of animal blood as a food source. Cruelty to animals (flies), perhaps; and fodder for an ethics debate. But if you want organic milk, butter, meat, yogurt, etc…

There are YouTube videos on the vacuum trap, and the Northeast Organic Dairy Producers Alliance has an in-depth article on the CowVac and its development by fly biocontrol specialist Tom Spalding of Spalding Labs: “…the Horn Fly is very tough to control. It’s resistant to most every chemical control. It only reproduces in cow pastures, which means there is always productive breeding material available as no one cleans up pasture pats…For the past 16 years, North Carolina State University entomologists, Dr. Wes Watson and Steve Denning, have been researching IPM practices for pest fly control for commercial livestock and poultry operations…They have seen it all, testing at least 100’s of products…repellent on most and only a few animals with pesticide, to using electric traps, light traps, walk thru traps, feed thru products, ear tags, oilers, you name it…in 2006 as Steve was watching flies get scrapped off cows going thru a walk in trap, and then following the cow out the exit and getting right back on, he had an AH HA moment of “let’s see if we could vacuum up those little buggers”…Organic Valley heard about this unit and they sponsored a test, placing 6 units on North Carolina dairies in 2012…we made a trip to Raleigh, NC to see it. I knew from our efforts using Fly Predators to control Horn Flies that this little insect was a big deal. It took a lot of work as you had to put the Fly Predators in the pastures where the cows has just been and that only worked for those doing intensive grazing. Harrowing or running a screen drag over the pastures made a big difference too, but all those things took more time than most dairymen had. If this vac thing worked it would solve a horrible problem every grazier has…We agreed to license the technology from NC State and so began the redesign for production and optimization. This is the second unlikely alignment of the stars. I run a beneficial insect company, but I’m a mechanical engineer (ME) by schooling and in the 30 years prior had started a number of high tech companies…we refined the airflow on real animals. While the simulated cow got us very close to optimized performance, we actually were blowing too much air…”


Impaling Bed Bugs on Tiny Spikes (Leaf Hairs)

October 21, 2014

KIDNEY BEAN LEAF hairs, an ancient Balkan folk remedy to ameliorate bed bugs biting like vampires in the nighttime and wee morning hours, are in essence medieval warfare pikes barbarically impaling bed bugs resistant to 20th and 21st century synthetic pesticides. The resurrection of kidney bean leaves from Balkan folklore is a measure of human desperation, and an example of an IPM (Integrated Pest Management) strategy combining multiple weapons and tactics to fight this modern-day plague. According to The Journal of the Royal Society Interface, a modern offshoot of the one of the earliest medieval gatherings (mid-1600s) of natural philosophers, scientists and scientific craftsmen (instrument makers) into an official organization, those Balkan peasants knew a thing or two about fighting pestilence with “primitive” botanical remedies. Ultimately, bed bug-impaling bean hair “swords” or fabricated replicas will be combined in IPM strategies with other tactics, including ancient Ayurvedic Asian herbal remedies like neem tree oils (see previous blog).

You are not alone in being plagued by bed bugs: According to the journal Medical and Veterinary Entomology (Davies et al., 2012) there are “over 4 millennia of recorded narratives dating back to medieval European texts, classical Greek writings and the Jewish Talmud” and “archaeologists excavating a 3550-year-old workmen’s village at el-Amarna in Egypt found fossilized bed bug remains.” Plus bed bug “Females lay one or two eggs every day, and each female may lay 200–500 eggs in her lifetime, which may be 6 months or longer.” Modern heated buildings with lots of cracks, crevices and hiding places are even more comfortable for bed bugs than the ancient unheated buildings and caves of our ancestors.

The search for botanical remedies is perhaps equally ancient. Sir Francis Avery Jones, writing in the Journal Of The Royal Society Of Medicine (v. 89, Dec. 1996): “In the Stone Age the hunter-gatherers have learnt by hard experience…Over the eons they could have recognized plants which dulled pain, induced sleep, healed wounds, or poisoned animals or their enemies like wolfsbane…In Iraq there is a well-preserved grave of Neanderthal man, dated to some 60,000 years ago, with grains of flower pollen thickly scattered around the bones. The pollen came from eight different species still grown in Iraq today, some having recognized medicinal uses…Very early documents from China, Egypt, Sumaria and India describe the uses of anise, mustard, caraway, mint, saffron, thyme, cardamom, turmeric, cloves and pepper. The herbals reached their peak in the first century AD when the Greek physician Dioscorides assembled his vast De Materia Medica, recording the name, description, habit and medical use of some 600 plants.”

Bean leaves in comparison are a relatively modern bed bug botanical, a variant on the Tudor England practice of covering floors with pest-repellent (e.g. versus fleas, flies, plague, gaol fever/typhus) strewing herbs for their uplifting aromatic properties (e.g. rosemary, woodruff, various mints, box, lavender, santolina, hyssop, balm, cleavers, costmary, marjoram, meadowsweet, tansy). Queen Elizabeth’s use of meadowsweet leaves and flowers was described in The Herbal or Generall Historie of Plantes (1597) by John Gerard: “leaves and floures of meadowsweet farre excell all other strewing herbs for to deck up houses, for the smell makes the heart merrie and joyful and delights the senses.”

The Balkan remedy of bed bugs becoming entangled in hooked bean leaf hairs was written about by someone named Bogdandy in 1927 in the journal Naturwissenschaften and then again in 1943 by the USDA’s Henry Richardson in the Journal of Economic Entomology. According to a 2013 issue of The Journal of the Royal Society Interface, whose authors included Catherine Loudon of the University of California Irvine, who talked about the subject at the Entomological Society of America (ESA): “Historical reports describe the trapping of bed bugs in Balkan countries by leaves from bean plants strewn on the floor next to beds. During the night, bed bugs walking on the floor would accumulate on these bean leaves, which were collected and burned the following morning to exterminate the bed bugs.”

Fire, burning bean leaves that have “hooked” or “trapped” bed bugs, might be considered an extreme and specialized form of pest control heat treatment to be practiced with extreme caution. But compared to combating blood-sucking (vampirism) and werewolfism (Lycanthropy) in Hollywood B-movies, who’s to say. YouTube has videos showing bed bugs getting snagged by bean leaf hairs, and a simulation indicating that real bean leaves are still better than synthetic fabrics fabricated to mimick bean leaves. Kidney bean varieties are best for impaling passing bed bugs, and easy to use around a bed. But some lima bean varieties and small passion flower leaves also work, said Loudon. Interestingly, like computer chips, bean hairs that snag bed bugs best are toughened with silicon, unlike synthetic fabric hairs so far fabricated from substances like dental molding.

But given enough time, I would expect researchers in some dark Transylvanian lab in the Vampire District or in some light-splashed lab with surfboards along Frankenstein Row on the southern California coast to focus their scanning electron microscopes under high and low vacuums and eventually patent and reveal to the world nano-fabric silica hairs of a monstrous nature (to bed bugs) that can protectively surround sleepers and trap bed bugs before they bite. Or perhaps the genetic engineers will get there first with a carnivorous plant (the Venus Bed Bug Trap) for biocontrol. But if you’re keeping score, for most of human history, with some periods of remission, Team Bed Bug is still on top. In the meantime, pleasant dreams; and don’t let the bed bugs bite.