Herbicide-Resistant Grains Reduce Global CO2

June 25, 2014

THE WAR BANNERS of the North American Global Climate Change Brigade are flying high and flapping in the wind as the West’s Crusade Against CO2 (carbon dioxide) ratchets up against the alleged Lex Luther of fossil fuels, the super-villain coal favored by the up-and-coming industrial economies of India and China. But the USA has an ace in the hole, an agricultural crop super-hero warrior equivalent of the comic book-heroes Batman & Robin or the US Navy Seals ready to colonize world grain farming areas and help save the day by reducing global CO2 emissions. Though its longer term sustainability is open to question and the development of herbicide resistant weeds are almost an assured part of the package, an interesting case can be made for using grain crops resistant to herbicides (mainly glyphosate at the moment) in no-till and minimum-tillage farming systems to reduce global CO2 emissions.

“Weeds are the most significant of the economic and environmental pests, and they are the target of much of the pesticides applied throughout the world,” wrote Rachel E. Cruttwell McFadyen in an Annual Review of Entomology article titled Biological Control of Weeds. “Herbicides comprise 47% of the world agrochemical sales, and insecticides 29%. Weeding, usually by hand, accounts for up to 60% of total pre-harvest labor input in the developing world.” All this herbicide use is having predictable ecological results. According to to the International Survey of Herbicide Resistant Weeds: “There are currently 432 unique cases (species x site of action) of herbicide resistant weeds globally, with 235 species (138 dicots and 97 monocots). Weeds have evolved resistance to 22 of the 25 known herbicide sites of action and to 155 different herbicides. Herbicide resistant weeds have been reported in 82 crops in 65 countries.”

However, when the herbicide use is coupled with grain crops that are herbicide-resistant in no-tillage or minimum-tillage farming systems, the reduction in CO2 emissions from the farming systems is quite dramatic. In a 2008 article titled “Glyphosate: a once-in-a-century herbicide” in the journal Pest Management Science, S.O. Duke and S.B. Powell wrote: “Glyphosate-Resistant crop use worldwide in 2005 resulted in a reduction of carbon dioxide emissions and potential additional soil carbon sequestration equivalent to the removal of about 4 million family cars from the road in terms of effects on global carbon balance.” This positive view of Roundup Ready® crops, which are genetically modified organisms (GMOs) resistant to the herbicide glyphosate, was echoed in 2012 in the Weed Science Society of America’s journal, Weed Science: “Adoption of conservation tillage in the United States since 1982 is credited with reducing average soil erosion by 30%, raising the amount of soil carbon, and lowering CO2 emissions.”

In 2010, the combined biotech crop-related carbon dioxide emission savings from reduced fuel use and additional soil carbon sequestration were equal to the removal from the roads of 8.6 million cars, equivalent to 27.7% of all registered cars in the UK (United Kingdom),” wrote Graham Brookes and Peter Barfoot in their 2012 UK report. “Based on savings arising from the rapid adoption of no till/reduced tillage farming systems in North and South America, an extra 4,805 million kg of soil carbon is estimated to have been sequestered in 2010 (equivalent to 17,634 million tonnes of carbon dioxide that has not been released into the global atmosphere).”

If you subscribe to the CO2-centric consensus that temperature change on planet Earth revolves almost exclusively around the evil-demon molecule, CO2, then like night follows day the case for no-tillage farming schemes using herbicide-resistant GMOs (genetically modified organisms) that sequester carbon, reduce soil erosion, minimize fossil fuel use and reduce CO2 emissions in a major way is tough to fight, even if the GMO scheme has some discomforting side-effects to swallow.

On the other hand, the consensus or majority view can sometimes turn out to be dead wrong, be it CO2 or commodity prices (e.g. houses, gold). I remember vividly the early 2000s, being in the 17% minority when an overwhelming 83% of the USA population were “in consensus” with the world “intelligence community” consensus belief in the absolute certainty of another evil demon threatening life on planet Earth, Iraqi Weapons of Mass Destruction. Turned out to be Iraqi Weapons of Mass Deception. But realistically, we cannot demand God-like perfection and 100% correctness from the consensus-making machinery. On a more scientific level, before the USA came into existence as a nation-state, there was a very sincere consensus belief (perhaps 97%) that the Earth was flat and ships sailing from Europe towards North America would be swallowed by dragons or perish in the void. A skeptical Christopher Columbus undeniably demonstrated otherwise. Likewise, Aristotle’s most accepted ancient scientific wisdom was later revised; and a skeptical Albert Einstein punched holes into previous beliefs about the nature of the physical world.

Organic and traditional grain growers do have some good reasons to resist growing herbicide-resistant GMO (genetically modified organisms) grains, despite the reduced CO2 emissions. Indeed, it is theoretically possible to develop organic herbicides (e.g. allelopathic extracts of sorghum, eucalyptus, sesame, sunflower, tobacco and brassica fight weedy wild oats & canary grass in wheat fields) and implement organic no-till and minimum-till systems with cover crops, green manures, mulches, intercropping, crop rotations, etc.

But for the moment, herbicide-resistant GMO grains have been voluntary adopted (no mandates or penalties for non-use) and dominate in the Americas for reasons having little to do with direct concern for CO2 emissions. Reduced CO2 emissions from farming systems incorporating herbicide-resistant GMO crops might be called a pleasant side effect; though logically it could become a global selling point, if not a global mandate (perhaps even enforced by the USA, EU, NATO or United Nations) as part of the “War on CO2.”

In point of fact, the IPCC (International Panel on Climate Change), which sets the European Union (EU) and global agenda on these matters is on record in their official reports, that herbicide-resistant GMOs used in no-tillage and minimum-tillage farming are a valid remedy for reducing CO2 emissions.

Though Brookes and Barfoot caution against taking their numbers too literally, because they are estimates based on assumptions and models (e.g. IPCC data), the contribution to CO2 emissions reduction from herbicide-resistant GMO crops and no-tillage farming is hard to dispute. If the consensus case against CO2 as the climate-change evil demon molecule is fully accepted and considered closed and beyond debate, then the case for herbicide-resistant GMO grains becomes politically correct and GMO-skeptics should logically be housed with CO2-skeptics in the same denial and heretic camp. However, the evil-demon status of CO2 is open to alternative interpretations incorporating some beneficial attributes of carbon atoms and CO2 molecules as essential to life on planet Earth.

Call it carbon skepticism or CO2 denial if you wish, but the famous Italian chemist Primo Levi, a concentration camp survivor (who later committed suicide) and knew firsthand that majority opinion can sometimes be tragically wrong, questioned the mainstream CO2 obsession and wrote: “Carbon dioxide, that is, the aerial form of carbon…this gas which constitutes the raw material of life, the permanent store upon which all that grows draws, and the ultimate destiny of all flesh, is not one of the principal components of air but rather a ridiculous remnant, an ‘impurity,’ thirty times less abundant than argon, which nobody even notices. The air contains 0.03 percent (CO2)…This, on the human scale, is ironic acrobatics, a juggler’s trick, an incomprehensible display of omnipotence-arrogance, since from this ever renewed impurity of the air we come, we animals and we plants…”

Lost in the shrill certitude and climate change bullying is the fact that CO2 is only 1 of about 200 atmospheric gases interacting with each other and other factors such as cloud cover in still not fully understood ways affecting climate and temperature; lack of adequate understanding for computer input is one reason why the computer model predictions are inherently prone to error and inaccuracy. Side effects of reduced atmospheric CO2 may include less plant photosynthesis (e.g. less food crop growth) and less water transpiration by plants (which may affect cloud cover and rainfall in ways that actually increase global warming).

Coal gets more of the blame for CO2 emissions. But, ironically, scrubbing (removing) sulfur dioxide (SO2) from burning coal caused much of the global warming blamed on CO2 by shrinking the Earth’s sulfate layer (which offsets the warming effect of CO2). Though the SO2 from coal burning is a pollutant we would not want back, it illustrates the complexity of the atmosphere, where selectively manipulating one thing leads to other unexpected problems. For example, put back the SO2 “scrubbed” from burning coal, and almost like magic the CO2 warming effects vanish (along with the rationale for global carbon taxes, cap-and-trade, and herbicide-resistant GMO crops to fight CO2). It’s like Dem Bones song on YouTube. Indeed, the cooling of the Earth when SO2 or sulfates are put back into the atmosphere by natural sources like volcanic eruptions is very dramatic. According to the U.S. Geological Survey:

“The most significant climate impacts from volcanic injections into the stratosphere come from the conversion of sulfur dioxide to sulfuric acid, which condenses rapidly in the stratosphere to form fine sulfate aerosols. The aerosols increase the reflection of radiation from the Sun back into space, cooling the Earth’s lower atmosphere or troposphere. Several eruptions during the past century have caused a decline in the average temperature at the Earth’s surface of up to half a degree (Fahrenheit scale) for periods of one to three years. The climactic eruption of Mount Pinatubo on June 15, 1991, was one of the largest eruptions of the twentieth century and injected a 20-million ton (metric scale) sulfur dioxide cloud into the stratosphere at an altitude of more than 20 miles. The Pinatubo cloud was the largest sulfur dioxide cloud ever observed in the stratosphere since the beginning of such observations by satellites in 1978. It caused what is believed to be the largest aerosol disturbance of the stratosphere in the twentieth century, though probably smaller than the disturbances from eruptions of Krakatau in 1883 and Tambora in 1815. Consequently, it was a standout in its climate impact and cooled the Earth’s surface for three years following the eruption, by as much as 1.3 degrees at the height of the impact. Sulfur dioxide from the large 1783-1784 Laki fissure eruption in Iceland caused regional cooling of Europe and North America by similar amounts for similar periods of time.”

Yes, major volcanoes are rarely more than a few per century; but there is also possibility of global cooling from a nuclear winter triggered by nuclear explosions. In 2011, a “rare” combination of a tsunami triggering a nuclear power plant meltdown intimidated the Japanese into shutting down their “clean” (as far as CO2 and greenhouse gas emissions go) nuclear power plants and substituting CO2-emitting fossil fuels; ironically, going against the United Nations Kyoto Protocol treaty negotiated in Kyoto, Japan. The Kyoto Treaty, whose stated “goal is to lower overall emissions from six greenhouse gases – carbon dioxide, methane, nitrous oxide, sulfur hexafluoride, HFCs, and PFCs,” had a few other flaws: “Please recall that China and India are Exempt from Kyoto standards,” writes Mish’s Global Economic Trend Analysis. “The US opted out because China was not a party. Canada signed the treaty but in 2012 Canada Leaves Kyoto Protocol, Lets China Buy Into Oil Sands.”

CO2 concentrations in the atmosphere of planet Earth have actually dropped dramatically over geologic time, and are nowhere near returning to former levels that favored plant life over animal life. University of Cambridge chemist John Emsley notes that natural sources, mainly the metabolism of food sources by plant and animal life, are still responsible for most CO2 production on planet Earth. In his book, Nature’s Building Blocks, Emsley writes: “The Earth’s early atmosphere may have contained a lot of carbon dioxide and methane, but once life evolved that began to change. Today, there is very little of these gases and a lot of oxygen instead, thanks chiefly to the action of plants which convert carbon dioxide and water into carbohydrate and oxygen by photosynthesis. The Earth’s atmosphere contains an ever-increasing concentration of carbon dioxide and carbon monoxide, from fossil fuel burning, and of methane, from paddy fields and cows. Human contributions to these sources are still minor compared with natural sources: most carbon dioxide comes from plants, microbes and animals, while methane is given off by swamps, marshes and termite mounds.”


The Mysteries of Colony Collapse

May 15, 2014

COLONY COLLAPSE DISORDER (CCD) of honey bees is one of the lingering mysteries of early 21st Century science in more ways than one: from its microbial, immune system and genetic components to an amorphous almost Orwellian terminology as imprecise and ambiguous as climate change (a slogan wide enough to encompass warming up, cooling down, and even staying the same temperature while the numbers fluctuate around the mean or average). The ambiguous language says both nothing and everything simultaneously, though underlying CCD is a quest for as yet unknown changes in insect rearing circumstances that will produce non-collapsing honey bee colonies. During the 19th century (1800s), a century marked by worldwide famines in the the old colonial empires and phylloxera-ravaged wine-grape vineyards collapsing in France, a revolution in modern medicine was being birthed in the mysteriously collapsing silkworm colonies. Fortunately for lovers of silk fabrics, fashion and textiles, 19th century silkworm farmers had the services of the real-life scientific Sherlock Holmes of the era, the famous French freelance scientist and sometime entomologist, Louis Pasteur.

Pasteur had a knack for solving applied problems like fermentation (beer, wine, vinegar) and silkworm colony collapse, and then using the results to develop broader theories like germ theory, which taught modern doctors to wash their hands and sterilize their instruments so as to stop spreading the germs that commonly killed their patients. How Pasteur almost single-handedly accomplished so much more than whole scientific institutes seemed able to do in the 20th century was the subject of an illuminating mid-20th century book, Louis Pasteur Free Lance of Science, by French-borne microbiologist Rene Dubos. “Toward the middle of the nineteenth century a mysterious disease began to attack the French silkworm nurseries,” wrote Dubos. “In 1853, silkworm eggs could no longer be produced in France, but had to be imported from Lombardy; then the disease spread to Italy, Spain and Austria. Dealers procuring eggs for the silkworm breeders had to go farther and farther east in an attempt to secure healthy products; but the disease followed them, invading in turn Greece, Turkey, the Caucasus–finally China and even Japan. By 1865, the silkworm industry was near ruin in France, and also, to a lesser degree, in the rest of Western Europe.”

“The first triumphs of microbiology in the control of epidemics came out of the genius and labors of two men, Agostino Bassi and Louis Pasteur, both of whom were untrained in medical or veterinary sciences, and both of whom first approached the problems of pathology by studying the diseases of silkworms,” wrote Dubos, who between World Wars I and II worked at the League of Nations’ Bureau of Agricultural Intelligence and Plant Diseases as an editor of the International Review of the Science and Practice of Agriculture. “A disease known as mal del segno was then causing extensive damage to the silkworm industry in Lombardy. Bassi demonstrated that the disease was infectious and could be transmitted by inoculation, by contact, and by infected food. He traced it to a parasitic fungus, called after him Botrytis bassiana (since renamed Beauveria bassiana, a widely used biocontrol agent)…An exact understanding…allowed Bassi to work out methods to prevent its spread through the silkworm nurseries. After twenty years of arduous labor, he published in 1836…Although unable to see the bacterial agents of disease because of blindness, Bassi envisioned from his studies on the mal del segno the bacteriological era which was to revolutionize medicine two decades after his death.”

Chemist Jean Baptiste Dumas, Pasteur’s mentor, prevailed upon the reluctant free lance scientist to head a mission of the French Ministry of Agriculture. “Although Pasteur knew nothing of silkworms or their diseases, he accepted the challenge,” wrote Dubos. “To Pasteur’s remark that he was totally unfamiliar with the subject, Dumas had replied one day: ‘So much the better! For ideas, you will have only those which shall come to you as a result of your observations!’”

A way of life was also at stake. As described in 19th century France by Emile Duclaux, Pasteur’s student and intimate collaborator (in Dubos’ book): “…the cocoons are put into a steam bath, to kill the chrysalids by heat. In this case, scarcely six weeks separate the time of egg-hatching from the time when the cocoons are carried to market, from the time the silk grower sows to the time when he reaps. As, in former times, the harvest was almost certain and quite lucrative, the Time of the Silkworm was a time of festival and of joy, in spite of the fatigues which it imposed, and, in gratitude, the mulberry tree had received the name of arbre d’or, from the populations who derived their livelihood from it.”

“The study of silkworm diseases constituted for Pasteur an initiation into the problem of infectious diseases,” wrote Dubos, who was influenced by the famous Russian soil microbiologist, Serge Winogradsky, who favored studying microbial interactions in natural environments rather than in pure laboratory cultures. “Instead of the accuracy of laboratory procedures he encountered the variability and unpredictability of behavior in animal life, for silkworms differ in their response to disease as do other animals. In the case of flacherie (a disease), for example, the time of death after infection might vary from 12 hours to 3 weeks, and some of the worms invariably escaped death…Time and time again, he discussed the matter of the influence of environmental factors on susceptibility, on the receptivity of the ‘terrain’ for the invading agent of disease. So deep was his concern with the physiological factors that condition infection that he once wrote, ‘If I had to undertake new studies on silkworms, I would investigate conditions for increasing their vigor, a problem of which one knows nothing. This would certainly lead to techniques for protecting them against accidental diseases.’”

“Usually, the public sees only the finished result of the scientific effort, but remains unaware of the atmosphere of confusion, tentative gropings, frustration and heart-breaking discouragement in which the scientist often labors while trying to extract, from the entrails of nature, the products and laws which appear so simple and orderly when they finally reach textbooks and newspapers,” wrote Dubos. “In many circumstances, he developed reproducible and practical techniques that in other hands failed, or gave such erratic results as to be considered worthless. His experimental achievements appear so unusual in their complete success that there has been a tendency to explain them away in the name of luck, but the explanation is in reality quite simple. Pasteur was a master experimenter with an uncanny sense of the details relevant to the success of his tests. It was the exacting conscience with which he respected the most minute details of his operations, and his intense concentration while at work, that gave him an apparently intuitive awareness of all the facts significant for the test, and permitted him always to duplicate his experimental conditions. In many cases, he lacked complete understanding of the reasons for the success of the procedures that he used, but always he knew how to make them work again, if they had once worked in his hands.”

Though famed for disproving the spontaneous generation of life, immunization via attenuated living vaccines and the germ theory of infectious disease: “Pasteur often emphasized the great importance of the environment, of nutrition, and of the physiological and even psychological state of the patient, in deciding the outcome of the infectious process,” wrote Dubos. “Had the opportunity come for him to undertake again the study of silkworm diseases, he once said, he would have liked to investigate the factors which favor the general robustness of the worms, and thereby increase their resistance to infectious disease…A logic of Pasteur’s life centered on physiological problems is just as plausible as that which resulted from the exclusive emphasis on the germ theory of contagious disease.”

The 21st century is riddled with insect colony conundrums and mysteries. For example, why among the social insects are honey bees plagued by Colony Collapse Disorder, while “Colony Expansion Disorder” prevails for other social insects in the USA. Rather than collapsing, USA colonies of Argentine ants are forming “super-colonies,” and red imported fire ant colonies are growing stronger by the day and annually expanding their North American geographic range; this despite being deliberately dosed with pesticides and attacked by biocontrol organisms (perhaps even more so than the beleaguered honey bees). And quite independently of mortgage rates and housing sales, Formosan subterranean termite colonies damaging billions of dollars of USA housing stock are happily munching away at both live trees and “dead-tree” wooden housing assets with little collective danger of colony collapse, though individual colonies come and go.

Perhaps beekeeping and crop pollination would be easier if Colony Collapse Disorder were an actual “disorder” as defined by the Diagnostic and Statistical Manual of Mental Disorders (DSM), and honey bees were endowed with sufficient consciousness and behaviors amenable to bee psychology or psychiatry.

The very real plight of honey bee colonies or hives is still in what Dubos would call the “atmosphere of confusion, tentative gropings, frustration.” At the most recent Entomological Society of America annual meeting, roughly a century and a half after silkworm colony collapse was eliminated by better more sanitary rearing practices, honey bee health was still puzzling. Honey bee colony loss in Virginia increased to 30% from 5-10% in recent years, possibly due to disease pathogens, pesticides and immune system suppression, say Virginia Tech researchers (e.g. Brenna Traver) studying glucose oxidase (GOX), an indicator of immunity in social insects. Honey bee social immunity is complex, involving factors as diverse as pheromones and grooming, and honey bee production of hydrogen peroxide (H2O2), which sterilizes food for the colony.

Nosema ceranae, a global gut pathogen, was seen all around the USA in 2007 at the same time as Colony Collapse Disorder. Black queen cell virus is another culprit, along with deformed wing virus, which is spread among honey bees by varroa mites. Then it is hard to overlook that over 120 different pesticides and their metabolites have been found in honey; including common beekeeper-applied pesticides such as coumaphos, fluvalinate, chlorothalonil and the antibiotic fumagillin. At the University of Puerto Rico, Gloria Dominguez-Bello is testing oxytetracycline and other commonly used antibiotics for their effects on honey bee microbes similar to those known to affect everything from obesity and brain function to organ transplants.

Those familiar with Pasteur’s entomological research on silkworm colony collapse in the 1800s would have experienced a sense of deja vu at the most recent Entomological Society of America meetings listening to Gloria DeGrandi-Hoffman, a research leader at the USDA-ARS Carl Hayden Bee Research Center in Tucson, Arizona. Nutrition, stress and pesticides may indeed be involved, but more focus is warranted for honey bee microbial health and gut microbes. Honey bee nutrition and microbiology is complicated by seasonal variations with changing food sources. According to DeGrandi-Hoffman, a lack of beneficial microbes may set honey bees up for infectious diseases like chalkbrood.

For example, pesticides used for Varroa mite control and potent beekeeping antibiotics like thymol and formic acid can affect the Lactobacillus microbes bees need for digestion and preservation of pollen as beebread, said DeGrandi-Hoffman. When bacterial plasmids found in high numbers in beebread are plated with the pathogen Aspergillus flavus, the pathogen rapidly loses virulence.

It is likely honey bees rely on beneficial microbes to protect from harmful pathogens, as honey bees have among the fewest immune system genes of any insect. Thus, when California almond growers spray fungicides, insecticides and miticides, a side effect could be fewer beneficial microbes in honey bee guts and in beebread. Thus, the honey bees would be less healthy and more susceptible to diseases like chalkbrood. Probiotic supplements designed to add beneficial microbes to honey bee diets are being tested in some California orchards. No doubt a familiar concept to those shopping for probiotic yogurts.


Whole Hog Into Debugging Michigan Apples

April 9, 2014

FROM TIME to TIME over the course of the centuries, agriculture seems to reinvent itself, and if anything modern agriculture based on the industrial model seems to be unconsciously integrating the higher animals back into the fruit tree groves, at least among those Michigan entomologists and farmers who appreciate the overlooked virtues of the hog as a faithful human servant at the beck and command of its handlers for hunting down pests that have become resistant to pesticides and difficult to control even with the latest pheromone mating disruption technologies. To those combating or hunting down feral pigs and wild boar disrupting native ecosystems and rooting up farm crops, turning pigs loose in apple, cherry, pear and other fruit tree orchards is likely to seem a heretical notion belonging to renegade rednecks or radical hippie farmers from the counterculture past stuck in a continuous time-warp loop with Spock and the characters from Star Trek.

One of the advantages of attending Entomological Society of America meetings is being able to follow themes like “livestock-crop reintegration,” which Ceres Trust Research Grants have been funding for Michigan State University entomologists like Krista Buehrer and Matthew Grieshop. Basically, organic hogs provide organic fruit orchards control of weeds and insect pests like plum curculio (Conotrachelus nenuphar), codling moth (Cydia pomonella) and Oriental fruit moth (Grapholita molesta). “The rotation of hogs through different pastures and orchards with supplemental nutrition sources” is also “a method of livestock-crop integration that avoids the problem of adhering to National Organic Policy (NOP) and Good Agricultural Practices (GAP) policies restricting the application of manure prior to harvest,” wrote Buehrer in “Graduate Student Final Report – Ceres Trust Research Grant.”

Rotating organic hogs through organic fruit orchards to clean out weeds and insect pests hidden inside fallen fruits, traces its roots to Charles Valentine Riley, who pioneered modern biological control in the orange orchards of Los Angeles, California. In his 1871 “Third Annual Report on the Noxious, Beneficial and other Insects of the State of Missouri,” Riley said that for apple curculio “the only real remedy is the destruction of infested fruit.” In 1890, writing in the Iowa Agricultural Experiment Station Bulletin, C.P. Gillette suggested grazing orchards with sheep or hogs to eat the insect-infested “windfallen fruit” on the orchard floor and thereby reduce pest populations.

From the 1800s into the Roaring Twenties, Iowa apple growers could not get rid of apple curculios by shaking the trees, cultivating the soil, pruning, or spraying arsenic pesticides, leading B.B. Fulton in 1925 and 1926 to test hog grazing on the “Apple Grove Orchards south of Mitchellville, Iowa.” Writing in the Journal of Agricultural Research in 1928, Fulton said: “The experiments with pasturing pigs were successful from a business standpoint. A cost account kept for the two years showed that this method of control was more than economical, for it actually netted a profit. In 1925 each pig returned a net profit of $10 above cost and feed and in 1926 a net profit of $7.65…five pigs per acre can, if properly handled, clean up the early dropped apples in an orchard and thus control the apple curculio. The critical time for such control, as shown by the seasonal history data, is from the middle of June until about the middle of July. Pigs weighing about 100 pounds are the best size for this purpose since they do not tramp down the low branches. They do not feed from the trees…”

Krista Buehrer told the 2012 ESA Annual meeting in Austin, Texas that weekly rotations (June-August) of grazing hogs eating dropped fruit (containing pests inside) on the orchard floor produced marketable organic hogs and reduced pests without harming earthworms or beneficial insects (e.g. lady beetles, lacewings, ground beetles, spiders, parasitoid wasps, tachinid flies, syrphid flies, dolichopodid flies, ants). ““There were 3 control plots and 3 hog grazed plots,” said Buehrer. “Grazed plots were bordered by electric fencing to prevent hogs from escaping. Twenty-four Berkshire hogs were rotated through each grazed plot twice. In 2012, they were in each plot for 1.5 weeks per rotation, for a total of 3 weeks per grazed plot. In 2013 they were in each plot for 1 week per rotation, for a total of 2 weeks per grazed plot. Hogs ranged from 50-90 lbs (23-41 kg) each.”

Hog grazing really only scratches the surface of changing fruit orchard floor management, which includes cover crops, living mulches, composts, etc. Perhaps it is more a case of everything old becoming new again, as grazing by cattle, sheep, goats, wild pigs and boar are considered part of traditional European agroforestry systems.


Drones, Bug-Bombs & Future Weed Control

February 21, 2014

FUTURE WEED CONTROL, looking out several decades, will inevitably by necessity gradually start shifting towards weed-eating insects for biological control, with a lesser mix of herbicides and tillage. Drones delivering “Bug-Bombs” with payloads of beneficial weed-eating insects may not be the fastest or deadliest means of killing weeds, but it is an ecological strategy with many benefits for fighting weeds in remote terrain, rangelands and large, hard-to-reach areas in general.

Yong-Lak Park, a West Virginia University (Morgantown) entomologist, calls it “Shooting insects from the sky: Aerial delivery of natural enemies using aerospace engineering.” At a late-night session of the KYE (Korean Young Entomologists) in Austin, Texas as part of the Entomological Society of America (ESA) annual meeting, Park’s informative slide show (now posted on the Internet) depicted a range of Unmanned Aerial Vehicle (UAV) designs and even a California vineyard in the agricultural vanguard with its own drones (not unlike flying model airplanes). Indeed, it is not hard to imagine a New Feudalism, where behind moated walls with locked gates and barking dogs, in an entertainment room with big screens and small monitors, sit modern medieval lords with joy sticks in hand commanding drone armies and air forces trying to rule universes, suburban lots and whatever.

Like model airplanes, UAVs are lightweight, inexpensive and relatively safe and easy to control, Park told the room full of Korean entomologists and a lone non-Korean writer in attendance. Equipped with sensor modules, GPS, digital cameras and video image analysis capabilities, UAVs can monitor weeds and detect weed biocontrol weevils on the ground with a resolution of up to 3 inches (8 cm). UAVs similar in design to the infamous drones used by certain governments for extrajudicial killings, and small helicopter-like octarotors are among the aerospace vehicles capable of delivering beneficial “Bug-Bombs” (bug pods) to large, hard-to-reach areas for biological control of weeds such as morning glory and mile-a-minute weed (Polygonum perfoliatum).

Galileo’s legendary sixteenth century scientific experiment dropping objects from the Leaning Tower of Pisa to see how fast they fell came to mind when Park described his rooftop tests dropping Bug-Bombs filled with weed-eating weevils from different heights. Only rather than challenging Aristotle’s ancient teachings, Park wanted to see if the bug pods, which are cannisters shaped like the bombs you see dropping from Allied planes in World War II film footage, would cushion the weevils when they hit the ground from different heights. Indeed, 80-90% of the beneficial weed-eating weevils inside the bomb-shaped pods survived being dropped 0, 10, 20 and 30 meters (0, 33, 66, 98 ft). The idea being that the pods pop open when they hit the ground in some remote weed-infested area, and the weevils hop out and go about their everyday life of eating their favorite weed and reproducing new generations of weevils.

Basically, you get an army of weevils on the ground doing weed control, as opposed to aerial bombardment with herbicides and all their environmental side effects. This is known as classical biological control of weeds, and it has a long track record. On the downside, it is expensive to find the right insects, as they must be collected, reared and tested to make sure that they stick to the weeds (so you don’t inadvertently introduce a crop pest, for instance). Then you need permits. It might be millions of dollars and decades later before all the hurdles are leaped and a successful program is out the gate. But it has worked against several dozen weeds, and often a successful program can then be easily replicated in a new location.


A Butterfly Ballet (haiku)

July 28, 2013

A butterfly ballet
In the front window
White wings and black dots dancing on purple lantana


Bed Bug Herbal Remedies Work Well With Traps

July 15, 2013

THE NEEM TREE (Azadirachta indica), a medicinal mahogany tree (Meliaceae) native to arid broadleaf and scrub forests in Asia (e.g. India), has been used for over 4,000 years in Vedic medicine and has a heavy, durable wood useful for furniture and buildings because it is resistant to termites and fungi. Nonetheless, despite US EPA registration as a pesticide for crop and home use and a long legacy of neem seed oil use for cosmetics, shampoos, toothpastes and medicines in India, Ohio State University researcher Susan Jones could not find any households near her Columbus, Ohio, home willing to try neem in her bed bug control experiments.

“We had no study takers because of the regulatory requirements,” which scared off people, Jones told the Entomological Society of America (ESA) Annual Meeting. “You have to read page after page to residents about toxicity without being able to talk about the toxicity of alternative products” not as safe as neem. In October 2012, an empty house with bed bugs became available for research when its occupant opted to escape a bad bed bug infestation by leaving the infested home; and inadvertently transferred the infestation to their new home.

Jones monitored the empty house by placing in each room four (4) Verifi(TM) CO2 (carbon dioxide) traps and four (4) Climbup(R) Interceptor traps. Visual inspections revealed few bed bugs. On October 24, 2012, prior to neem treatments, 38 bed bugs were captured in Climbup(R) traps, indicating bed bug infestations only in the master bedroom and bed of the empty house. Eight Verifi(TM) traps captured 48 bed bugs in the dining room, guest room and master bedroom. As part of an IPM (integrated pest management) approach using multiple treatment tools: Electrical sockets were treated with MotherEarth(R) D diatomaceous earth; 3.67 gal (13.9 l) at a rate of 1 gal/250 ft2 (3.9 l/23 m2). Gorilla Tape(R) was used to seal around the doors and exclude bed bug movement from other rooms.

The neem seed oil product, Cirkil(TM) RTU, was sprayed in various places, including on books, backs of picture frames and cardboard boxes. Vials of the insecticide-susceptible Harlan bed bug strain were placed around the house for on-site neem seed oil vapor toxicity assays. Two days after spraying, bed bug mortality from neem seed oil vapors was highest in confined spaces; with 48% mortality in vials placed between the mattress and box spring, versus 28% mortality in open spaces. On Nov. 6, two weeks post-treatment, 123 dead bed bugs were vacuumed up and live bed bugs were detected in a second bedroom. Bed bug numbers were low because the monitoring traps were doing double duty, also providing population suppression by removing many bed bugs.

Herbal oils can also be combined with heat chambers at 50 C (122 F) or carbon dioxide (CO2) fumigation chambers to combat bed bugs. However, heat chambers are expensive, and CO2 fumigation with dry ice can pose handling difficulties and room air circulation issues, Dong-Hwan Choe of the University of California, Riverside, told the Entomological Society of America (ESA).

Herbal essential oils are useful against head lice, and in Choe’s native Korea clove oil from from the leaves and flower buds of clove plants (Syzygium aromaticum) is used in aromatherapy and as a medicine. Clove oil is rich in GRAS (Generally Recognized as Safe) compounds such as eugenol, beta-caryophyllene and methyl salicylate (sometimes called wintergreen oil), which are useful as vapors in control of insects and microbes. In dentistry, clove oil (eugenol) is widely used as an antiseptic and pain reliever.

Clove essential oils work faster in closed spaces or fumigation chambers (e.g. vials, Mason jars) than in open spaces. Essential oils are even slower to kill bed bugs when orally ingested. In experiments at varied temperatures, Choe placed 10 bed bugs in plastic vials with mesh tops. The vials were placed inside 900 ml (1.9 pint) Mason jars; filter paper treated with essential oils was placed on the underside of the Mason jar tops.

Herbal essential oils worked faster at higher temperatures. For example, methyl salicylate fumigant vapors provided 100% bed bug mortality in 30 hours at 26 C (79 F); 10 hours at 35 C (95 F); and 8 hours at 40 C (104 F). Eugenol vapors produced similar results; there were no synergistic or additive effects from combining eugenol and methyl salicylate. Choe told the ESA that his future trials will include: botanical oil granules; exposing bed bug-infested items to essential oil vapors; and checking for sublethal essential oil effects on parameters such as female bed bug reproduction.

Narinderpal Singh of Rutgers placed bed bugs on cotton fabric squares treated (half left untreated) with synthetic pesticide and herbal essential oil products: 1) Temprid(TM) SC, a mixture of imidacloprid and cyfluthrin (neonicotinoid and pyrethroid insecticides); 2) Ecoraider(TM) (Reneotech, North Bergen, NJ) contains FDA GRAS ingredients labeled as “made from extracts of multiple traditional herbs that have been used in Asia for hundreds of years for therapy and to repel insects;” 3) Demand(R) CS, which contains lambda-cyhalothrin (a pyrethroid insecticide); 4) Bed Bug Patrol(R) (Nature’s Innovation, Buford, FL), a mixture with the active ingredients listed as clove oil, peppermint oil and sodium lauryl sulfate.&&

Temprid(TM) SC and Demand(R) CS proved best on the cotton fabric test. In arena bioassays with Climbup(R)Interceptor traps, none of the four insecticides were repellent to bed bugs (i.e. repellency was less than 30%). Ecoraider(TM) was equal to Temprid(TM) SC and Demand(R) CS against the tough to kill bed bug eggs. Singh concluded that field tests of Ecoraider(TM) as a biopesticide were warranted.

Changlu Wang of Rutgers told the ESA that travelers might be protected from bed bug bites and bring home fewer bed bugs if protected by essential oil repellents, as well as by more traditional mosquito and tick repellents like DEET, permethrin and picaridin. Repellents are more convenient and less expensive than non-chemical alternatives such as sleeping under bed bug tents and bandaging yourself in a protective suit.

Isolongifolenone, an odorless sesquiterpene found in the South American Tauroniro tree (Humiria balsamifera), is among the botanicals being studied, as it can also be synthesized from turpentine oil and is as effective as DEET against mosquito and tick species. Bed bug arena tests involve putting a band of repellent around a table leg, with a Climbup(R)Interceptor trap below. If the bed bug falls into the trap, it is deemed to have been repelled from the surface above. In actual practice, the bed bug climbs up the surface and goes horizontal onto the treated surface and drops or falls off if the surface is repellent. Isolongifolenone starts losing its repellency after 3 hours; 5%-10% DEET works for about 9 hours. In arena tests with host cues, 25% DEET keeps surfaces repellent to bed bugs for 2 weeks. But isolongifolenone is considered safer, and Wang is testing higher rates in hopes of gettting a full day’s protection.


Pollinator-Friendly Lawns: Flowers or No Flowers?

April 28, 2013

TURF is a $25 BILLION USA INDUSTRY, said Nastaran Tofangsazi of the University of Florida (Apopka, FL), a sex pheromone researcher looking to complement biocontrols like beneficial Beauveria bassiana fungi and Steinernema carpocapsae nematodes to control the browning and uneven grass growth caused by tropical sod webworm (Herpetogramma phaeopteralis) in Florida’s $9 billion worth of turfgrass. Also at the Entomological Society of America (ESA) annual meeting, Auburn University’s R. Murphey Coy noted that the USA’s 164,000 km2 (63,320 square miles) of turf is the USA’s most irrigated crop. Turfgrass irrigation consumes 300% more water than corn; plus 4.5 pounds (2 kg) of nitrogen per 1,000 square feet (93 m2).

Alabama is among the top USA turfgrass-producing states, and Auburn University researchers are looking to reduce turfgrass water, nitrogen and iron inputs by colonizing grass seeds and roots with easy to apply sprays of plant growth promoting rhizobacteria (PGPR). Blends of PGPR species such as Bacillus firmis, Pseudomonas and Rhizobium in turfgrass and cotton induce systemic resistance to pestiferous Fusarium fungi and triple parasitic wasp biocontrol of the caterpillar larvae of moth pests like fall armyworm (Spodoptera frugiperda).

Not everyone is a fan of turfgrass lawns, and before the modern chemical era lawns were more like fragrant flowery meadows. “Agricultural experts and agribusiness are bound by the idea that even land that has lost its natural vitality can still produce crops with the addition of petroleum energy, agricultural chemicals, and water…considering this form of agriculture to be advanced,” wrote Japanese agriculturist and philosopher Masanobu Fukuoka in the book, Sowing Seeds in the Desert (edited by Larry Korn).

“When I suggested that it would be a good idea to plant fruit trees to line the streets in towns and cities and to grow vegetables instead of lawns and annual flowers, so that when the townspeople were taking a walk, they could pick and eat the fruit from the roadside, people were surprisingly enthusiastic,” said Fukuoka. “When I suggested that it would be good to scatter the seeds of clover and daikon on the existing lawns so that in two or three years the clover would overcome the lawn and the daikon would take root amid the ground cover, interestingly, it was the Asian people and Asian-Americans who said they would try it right away. Most Americans would just laugh and agree with the theory, but they were cautious about putting it into practice. The reason, I believe, is that it would challenge their adherence to ‘lawn’ culture. If they cannot overcome this prejudice, there will be a limit to the growth of family gardens in the United States.”

“It seems that the main goal in the life of the average American is to save money, live in the country in a big house surrounded by large trees, and enjoy a carefully manicured lawn,” wrote Fukuoka. “It would be a further source of pride to raise a few horses. Everywhere I went I preached the abolition of lawn culture, saying that it was an imitation green created for human beings at the expense of nature and was nothing more than a remnant of the arrogant aristocratic culture of Europe…Because residential lots are large in the United States, a family vegetable garden can provide for all the food needs of a typical family, if they are willing to do the work. In Japan, a residential lot about a quarter acre would be enough to allow near self-sufficiency and provide a healthy living environment, but I learned—to my envy—that in many suburban and rural areas of the United States, people are not allowed to build houses on small lots.”

On closer inspection, modern American lawns are more often a biodiverse mixture of turfgrass and flowering plants like clover and dandelions. Kentucky bluegrass lawns may be 30% white clover, which favors native pollinators like bumblebees. Clover and dandelion flowers attract honey bees, bumble bees, parasitic wasps that kill pests, hover flies (syrphids) that eat aphids, and carnivorous rove and ground beetles eating snails, slugs, caterpillars and other pests. Nonetheless, tons of herbicides go onto USA lawns to eradicate clover and dandelions as weeds, often as part of fertilizer and insecticide mixtures.

Turf biodiversity is all well and good, but only as long as the clover and dandelion flower nectar is pure and uncontaminated by pesticide cocktails. Lawns laden with clover and dandelion flowers provide bees and beneficial insects with “a big gulp of nectar,” the University of Kentucky’s Jonathan Larson told the ESA annual meeting in Knoxville, Tennessee. When those “big gulps of nectar” are laced with certain neonicotinoid pesticides, the effects can ripple through the ecological food chain.

When turfgrass pesticide labels say, ‘Don’t treat flower heads,’ “Follow the label to the letter of the law” to avoid poisoning pollinators, said Larson. Or get rid of the flowering plants in the lawn by mowing the turf before spraying. Or delay pesticide sprays until after clovers, dandelions and other lawn flowers have finished flowering. Clover control in lawns using herbicides is difficult, and usually not feasible, Larson told the ESA. Hence, mowing is the preferred strategy for removing flowering lawn weeds before spraying pesticides.

In enclosure experiments with tents confining bees in the turf, mowing the turf before pesticide treatment mitigated the problem, resulting in more bees and more honey. In 2012, bees were tented on clothianidin-treated turf for 6 days and then moved for 6 weeks to a Lexington, Kentucky, horse ranch with unsprayed turf. Clothianidin reduced the rate of bumble bee weight gain, but at the end of 6 weeks the bees were starting to catch-up. But overall, the 6-day pesticide exposure still resulted in reduced bumble bee weight gain, less foraging and reduced queen and hive reproduction several weeks later. Chlorantraniliprole, which has a different mode of action (muscular), did not produce these adverse effects. Larson also told the ESA that clothianidin, a widely used neonicotinoid turf pesticide, also reduces decomposers (detritivores) like soil-dwelling earthworms and springtails more than chlorantraniliprole.

Besides supporting more soil life, more biocontrol organisms, and healthier crops of pollinating bees, you get a healthier turfgrass lawn if you do not need pesticides and do not have to mow so often. “Mowing height is an easily manipulated cultural practice that can have an impact on ecological conditions,” Samantha Marksbury from the University of Kentucky, Lexington, told the ESA. “Taller grass usually supports a more diverse ecosystem and increases natural enemies. Increasing cutting height stimulated deeper roots, yielding a healthier turf with less need for insecticide. Higher mowing height decreases need for irrigation and the canopy prevents water loss.”

Taller turf (raised mowing height) also tends to be more robust and more tolerant of white grubs. Nevertheless, about 75% of turf is lush residential monocultures (mostly one grass species) that is heavily fertilized, dosed with chemical herbicides and frequently mowed, Emily Dobbs of the University of Kentucky, Lexington, told the ESA. However, the ecology of grass cutting or mowing gets quite complex and has seasonal variations. In May, turf with a low mowing height (2.5 inches; 6.4 cm) was hotter, drier, and had the most predatory ground beetles, rove beetles and spiders. Later in the season and Sept/Oct, turf with a higher mowing height (4 inches; 10.2 cm) was cooler, wetter, and had the most predators.

Historically, in the Middle Ages in England, going back many centuries (even before Chaucer) before the age of chemical farming and gardening, lawns were “flowery meads” with roses, violets, periwinkles, primroses, daisies, gillyflowers and other colorful, fragrant flowers interplanted right into the turf. The idea of planting a lawn with one species of grass made no sense, though a camomile lawn or plot came into being for infirmary gardens in England after 1265, as this medicinal aromatic plant helped other plants growing nearby in poor soils and grew faster the more it was trodden.

“There were no flower-beds of the sort familiar to us,” wrote Teresa McLean in her 1981 book, Medieval English Gardens. “The simplest type of flower garden was the flowery mead, wherein low-growing flowers were planted in turf lawns, sometimes walled, sometimes left open, to make a beautiful domestic meadow. The flowery mead was the locus amoenus of God’s beautiful world.”

“Trees were often planted in raised turf mounds, surrounded by wattle fences, which doubled as seats,” wrote McLean. “Medieval lawns, unlike modern ones, were luxuriously long, and full of flowers and herbs; they were fragrant carpets to be walked, danced, sat and lain upon. What modern lawn could find a poet to write about it as Chaucer wrote about the one in the Legend of Good Women?

Upon the small, soft, sweet grass,
That was with flowers sweet embroidered all,
Of such sweetness, and such odour overall…”


Follow

Get every new post delivered to your Inbox.

Join 44 other followers