Grapes Love Tobacco & Sage

June 13, 2015

GRAPE VINES GAIN and pests suffer when TOBACCO and SAGEBRUSH grow in the same neighborhood. For example, Chinese experiments show that when tobacco roots intermingle with grape roots, vineyards soils are progressively cleansed of the dreaded soil-dwelling phylloxera aphid; the same phylloxera aphid that almost completely destroyed French grape growing in the 1800s, before resistant rootstocks were discovered. In recent decades, the phylloxera aphid has evolved new forms that destroy formerly-resistant rootstocks. But on the positive side, the phylloxera plague in nineteenth century French vineyards was a major catalyst for innovations such as the development of modern scientific agriculture and modern methods for fumigating or disinfesting sick soils.

Tobacco plants get a bad rap today, as the source of abused and addictive products with adverse health effects. But it was not always so, and need not be so today, write David A. Danehower and colleagues in the book, Biologically Active Natural Products: Agrochemicals: “When Columbus first arrived on the shores of North America, he found Native Americans growing and using a plant unknown to Europeans. This plant held great spiritual significance to Native Americans. Scientists who followed in the footsteps of the early North American explorers would later name this plant tobacco. Tobacco (Nicotiana tabacum) farming began in the early 1600s near the Jamestown colony in Virginia. As the use of tobacco products for smoking, chewing, and snuff was promoted in Europe, tobacco became a leading item of commerce between the colonies and England. Notably, George Washington and Thomas Jefferson both farmed tobacco. Thus, the history of America is inextricably linked with the history of tobacco production.”

The specific idea of interplanting tobacco with grapevines to control soil pests like phylloxera aphids is apparently a recent Chinese agricultural innovation. Why no one thought of it before is a mystery, as nicotine from tobacco plants has a long history as a fumigant and sprayed insecticide; and more recently sweet “sugar esters” (fructose, glucose, fatty acids) have been singled out from among the several thousand chemical compounds in tobacco as “new” natural insecticides (some fungi and other microbes are also killed). Perhaps agricultural tradition plays a role, as the Chinese have an ancient agricultural heritage that includes pioneering biological pest control (e.g. predatory ants to control citrus orchard pests) and routinely interplanting compatible plants for their pest-fighting and mutually beneficial effects. Of course, growing cover crops and beneficial insect plants like sweet alyssum in grape rows is becoming more common. And since ancient times, the Mediterranean areas of Europe and the Middle East have had grape vineyards interspersed with oaks (corks, barrels for wine grapes), olive trees and crops such as wheat. But never before has tobacco been grown among grape vines to control soil pests. Indeed, modern farmers seem to favor pumping liquid chemicals and volatile gases into the soil to combat soil pests.

Perhaps as close as a nineteenth century French grape grower came was Bernardin Casanova of Corsica, France, who in 1881 patented a liquid mixture of grape distillates, Corsican tobacco, spurge, laurel, grain straw, burnt cork and soap that was rubbed and poured on the base of grapevines to kill phylloxera. In California, which has native plants that are every bit as insecticidal as nicotine from tobacco, the only anti-phylloxera interplanting seems to have been new resistant rootstocks to eventually take the place of the old. In essence, a concession of failure and a starting over with new rootstock (and pulling out the old phylloxera-infested vines).

Like Mr. Casanova in nineteenth century France, the modern Chinese researchers started out with a watery solution containing tobacco; but in a bit more scientific fashion with controlled tests of the tobacco solution on young greenhouse-grown grape vines. “The results showed that aqueous extracts of tobacco had certain alleviating effects on phylloxera infection,” according to a 2014 abstract from the journal Acta Entomologica Sinica. “Both the aqueous extracts of tobacco at the concentration of 20 mg/mL and 50 mg/mL had an inhibition to phylloxera infection,” with a 50% reduction in phylloxera infection within 3 weeks (along with a reduction of fungal invaders that kill injured grape roots).

Chinese tobacco-grape laboratory and field studies were also reported in the Journal of Integrative Agriculture in 2014. The lab studies indicated that tobacco extracts in water were indeed a valid herbal (botanical) remedy against phylloxera aphids. In three years of field tests with tobacco interplanted in infested grape vineyards, phylloxera infestations of grape roots steadily decreased each year. “Tobacco was used as the intercropping crop because it includes nicotine, which is a source of bio-insecticides,” said the researchers. “The production of new grape roots was significantly higher in the intercropping patterns than in the grape monoculture in 2010, 2011 and 2012, and the vines gradually renewed due to the continuous intercropping with tobacco over three years…The results indicated that the secondary metabolites of tobacco roots had released to soil and got to the target pest.” Tobacco intercropping effects on grape plants was also measurable in terms of “cluster number per plant, cluster weight, cluster length, cluster width, berry number per cluster, mean berry diameter in the mid portions of the cluster, carbohydrate content, fruit color index, leaf width and branch diameter.” The researchers expect that this “Successful intercropping with tobacco” will stimulate more research with other insecticidal plants to disinfest vineyard soils.

We could probably end the blog item here, or have a second article as part II, but we have some interesting interactions among sagebrush and tobacco plants that can spillover to grape vineyards. Oddly enough, sagebrush and tobacco seem to get along very well. According to M.E. Maffei, writing in the South African Journal of Botany: “Aerial interaction of the wild tobacco (Nicotiana attenuata) and sagebrush (Artemisia tridentata subsp.) is the best-documented example of between-plant signaling via above-ground VOCs (Volatile Organic Compounds) in nature.” Wounded or “Clipped sagebrush emits many volatiles, including methyl jasmonate, methacrolein, terpenoids, and green leaf volatiles.” These sagebrush volatiles (VOCs) stimulate nearby tobacco plants to become less hospitable to caterpillar pests (fewer in number). The process is called priming and results in plants producing more chemicals deleterious to pests. For readers desiring all the details and more theory: In 2006, Kessler et al. published in a journal called Oecologia under the title “Priming of plant defense responses in nature by airborne signaling between Artemisia tridentata and Nicotiana attenuata.”

Big Sagebrush, known scientifically as Artemisia tridentata, is a native North American plant that can reach 4 meters in height and live from 30 to over 200 years in arid desert environments by using hydraulic lift to pump water from deep soil layers. The plants are a rich and underutilized source of medicinal compounds, insecticides, fungicides, natural preservatives, etc. Worldwide there are at least 500 Artemisia sagebrush species, many used in traditional medicines (e.g. China), cosmetics, insect repellents, and as spices and flavorings in foods. For example, Artemisia annua has attracted attention to combat malaria. Readers desiring a crash course in Artemisia species and their bio-active essential oils will find it online in an excellent 24-page review article in a journal called Molecules.

Big Sagebrush is “found in arid regions of North America from steppe to subalpine zones, dry shrub lands, foothills, rocky outcrops, scablands, and valleys,” wrote Christina Turi and colleagues in 2014 in the journal Plant Signaling & Behavior. “Traditionally, species of Big Sagebrush have been used as a ceremonial medicine to treat headaches or protect individuals from metaphysical forces. A total of 220 phytochemicals have been described in A. tridentata and related species in the Tridentatae. Recently, the neurologically active compounds melatonin (MEL), serotonin (5HT), and acetylcholine (Ach) were identified and quantified.” In other words, sagebrush plants and human brains and nervous systems have a lot in common.

Indeed, galanthamine, a botanical drug treatment for mild to moderate Alzheimer disease, can also be used to “treat” sagebrush. Galanthamine, which is named after the snowdrop plants (Galanthus species) where it was discovered, is also found in Narcissus and other common bulbs. Galanthamine is, according to researchers Turi et al., “a naturally occurring acetylcholinesterase (AchE) inhibitor that has been well established as a drug for treatment of mild to moderate Alzheimer disease.” Why bulb plants produce chemicals affecting both Alzheimer disease (human nervous systems) and sagebrush plants is a good question. One theory is that plants release these chemicals into the environment to communicate with and influence the behavior of other plants, and also perhaps deter or otherwise influence herbivorous animals. Environmentalists, overly preoccupied with worries about carbon dioxide and GMOs, might ponder the fact that human chemicals with medicinal effects released into the environment might be the bigger threat, affecting plants and ecosystems in ways not yet fully appreciated that may comeback to bite us.

The Western USA is known for its vast expanses, perhaps 50 million acres with Big Sagebrush, some of which is being displaced for vineyards in isolated valleys in the Pacific Northwest. I particularly like the description of the Big Sagebrush ecosystem at the Sage Grouse Initiative: “To many of us, sagebrush country symbolizes the wild, wide-open spaces of the West, populated by scattered herds of cattle and sheep, a few pronghorn antelope, and a loose-knit community of rugged ranchers. When you stand in the midst of the arid western range, dusty gray-green sagebrush stretches to the horizon in a boundless, tranquil sea. Your first impression may be of sameness and lifelessness—a monotony of low shrubs, the over-reaching sky, a scattering of little brown birds darting away through the brush, and that heady, ever-present sage perfume.”

About 90% of the native sagebrush steppe habitat in the eastern Washington grape growing area was removed to make way for the vineyards. But the 10% remaining sagebrush habitat may have important ecological benefits, such as improved natural or biological pest control in the vineyards. One suggestion is to leave some of the native Big Sagebrush around vineyards, for its beneficial ecological effects. “Perennial crop systems such as wine grapes have begun using cover crops and hedgerows to increase beneficial insects and promote sustainable vineyard management in areas like New Zealand and California,” Washington State University researcher Katherine Buckley told the 2014 Entomological Society of America (ESA) annual meeting in Portland, Oregon. “However, in arid wine growing regions such as eastern Washington, cover crops are often prohibitively expensive due to water costs. We wanted to determine if native plants, which require little or no irrigation, could be used to increase beneficial insects and enhance conservation biological control of vineyard pests in eastern Washington.”

The native sagebrush steppe ecosystem has a wide range of plants, but is characterized by species such as big sagebrush (Artemisia tridentata), rabbitbrush (e.g. Chrysothamnus, Ericameria spp.), bitterbrush (Purshia spp.) and perennial bunchgrasses (e.g. Agropyron, Stipa, Festuca, Koeleria, Poa spp.). The Big Sagebrush ecosystem is richer in species than meets the eye at first glance. Over 100 species of birds (e.g. sage grouse, sage thrasher, sage sparrow and Brewer’s sparrow) forage and nest in sagebrush communities, and they could provide a lot of insect biocontrol at less cost and with less environmental impact than chemical sprays.

A U.S. Forest Service report called Big Sagebrush a keystone species and “a nursing mother” to “31 species of fungi, 52 species of aphids, 10 species of insects that feed on aphids, 42 species of midges and fruit flies that induce galls, 20 species of insects that parasitize the gall inducers, 6 species of insects that hibernate in big sagebrush galls, 18 species of beetles, 13 species of grasshoppers, 13 species of shield-back katydids, 16 species of thrips, 74 species of spiders, 24 species of lichens, 16 species of paintbrushes, 7 species of owl-clovers, 5 species of bird’s beaks, 3 species of broom rapes, and a host of large and small mammals, birds, and reptiles.”

“After locating vineyards with some form of native habitat restoration in four different growing regions of eastern Washington, yellow sticky traps and leaf samples were used to monitor beneficial and pest insect numbers in the habitat restored vineyards and nearby conventional vineyards over a three year period,” said Buckley. The native plants, which are adapted to the region’s hot summers and cold winters, are home to at least 133 insect species. Native habitat vineyards had fewer pest insect species; and higher populations and a higher diversity of beneficial insects. Anagrus wasps, which are known to parasitize pesky grape leafhoppers, were most abundant in Big Sagebrush. More amazingly, this leafhopper biocontrol wasp was found year-round in Big Sagebrush, even when the plant was not flowering. No other plant, not even the photogenic wild roses planted at the end of vineyard rows and admired by tourists, hosted the tiny leafhopper biocontrol wasp year-round.

Garden herbs such as thyme (Thymus ssp.), mugwort (Artemisia ssp.) and fennel (Foeniculum ssp.) have all been tested in vineyard interrows because they are fungicidal against Botrytis cinerea, a fungus attacking grape clusters, and boost soil micro-nutrients like copper, manganese and zinc. Maybe at some point in time, the Chinese interplantings of tobacco and alternating strips of Big Sagebrush (or other Artemisia species) and garden herbs will all get integrated together with other cover crops and native hedgerows into grape vineyards for a more biological or natural approach to agriculture. With sagebrush and tobacco, we have only scratched the surface of vineyard possibilities.

Advertisements

Silkworms for Medicine & Good Health

August 17, 2014

A SILKWORM A DAY may not keep the doctor away, but for some in South Korea silkworm proteins are the pathway towards reduced Alzheimer’s disease, less diabetes, less fatigue, stronger muscles and perhaps eventually gold and silver Olympic swimming medals; much the way ghost moth caterpillars naturally infected with cordyceps fungi are used by Chinese athletes and herbal medicine practitioners. Silkworm production dates back several thousand years, and likely came to the Korean Peninsula via China, where over a thousand years ago bolts of silk (30 ft/bolt; one day’s production by a skilled weaver) were equal to silver and gold as hard currencies. A director of the International Dunhuang Project (IDP) investigating ancient Silk Road links between Asia, the Middle East and Europe, Susan Whitfield, wrote in her book, Life Along the Silk Road, that distrust of promissory notes led to demands that horse buyers pay with bolts of silk. According to A Guide to Korean Cultural Heritage (Korean Information Service, 2001): “In Korea, ma (hemp) and ppong (mulberry) trees were cultivated; myeonpo (cotton cloth) and mapo (hemp cloth), as well as hapsa (twisted thread)” and jasu (embroidery) on silk date back well over a thousand years to a time when China imported fine silks from Korea.

Medically, biodegradable silkworm fibers are highly valued for their biocompatiblity (i.e. minimal immune response) when sewn with human tissues as sutures or stitches. Various formulations of silk are also useful in surgical or bioengineering operations such as growing new bones, nerves or blood vessels. “As has been documented over decades, silk protein exhibits high mechanical strength and flexibility, permeability to water and oxygen and can be made into nets, sponges or membranes, being easily handled, manipulated and sterilized…especially in tissue engineering for the generation of artificial bones or ligaments,” write researchers at China’s Nantong University investigating “silk-based or silk-coated materials for peripheral nerve repair.” The idea being to use silk “as scaffold material to prepare the tissue engineered nerve grafts for promoting peripheral nerve regeneration.” Silk scaffolds or blood vessels can also be designed to release various drugs (e.g. anti-coagulants, antimicrobials, anti-inflammatory agents).

Silks can also be naturally colored or made luminescent (fluorescent) by incorporating coloring agents into silkworm mulberry leaf diets: Hence, “novel silk-based material (that) not only maintains the superior properties of natural silk but can also be imbued with additional properties to perform sensing and monitoring functions” such as measuring changes in wound or tissue pH (i.e. acidity, alkalinity), says Dr. Han Mingyong, Senior Scientist at Singapore’s Institute of Materials Research and Engineering (IMRE). “The novel silk material can be used as fabrics in apparel, and furnishing. In biomaterials, it can add function to sutures, wound dressings, and tissue engineering scaffolds.” All this at “minimal cost and with little modification” of centuries-old standard silkworm production practices, but with real environmental benefits because: “The lengthy dyeing process and post-processing steps in conventional silk making are completely removed.”

Silkworm silk production involves getting the adult female silkworm moths, which are flightless and can no longer live in the wild after centuries of domestication, to lay eggs that hatch into caterpillars living on mulberry (some species prefer oak) leaves. When the silkworms pupate, they spin a silken cocoon which is dropped in boiling water so that the outer silk threads unravel and can be spun into the fibers of commerce. “According to legend, 5,000 years ago Chinese Empress Xi Ling-Shi discovered silk when a silkworm cocoon fell into her hot cup of tea,” says Ecoworldly.com. “She unraveled the strange cocoon and, wrapping the thread around her finger, soon realized what an exquisite cloth it would make…If this is true, the silkworm that haplessly fell into the empress’ cup on that fateful day met a fate very similar to that of modern day silkworms.” Being insects, which are animals, they are not vegetarian fare; those concerned with animal cruelty and animal rights activists need to consider that these silkworms are in essence a human-created species (almost a symbiosis) and unable to survive in the wild.

Beondegi (번데기), the boiled or steamed silkworm chrysalis, are served as a snack food on the streets in Korea, and University of Florida, Gainesville, entomology professor Nan-Yao Su, who donated termite trap (Sentricon) royalties to establish the Entomological Society of America’s (ESA) “Nan-Yao Su Award for Innovation and Creativity in Entomology,” told me of eating silkworm snacks as a student in Japan. Dr. Su was not that impressed, an opinion shared by a South Korean and her Brazilian guest’s “gag me with a spoon response” on Izumislife vlog on YouTube; though an older Korean lady in the background, presumably more well-versed in beondegi’s medicinal properties was gulping down the boiled insects sold by the street vendor like there was no tomorrow (increased longevity may indeed be a beondegi benefit). Evidently, silkworms or beondegi (번데기) are a cultivated taste. But Dr. Su, with Professor Marjorie Hoy as my witness, professed not to be a Trader Joe’s fan either. So, I kept to my plan to attend the Tuesday night ESA Annual Meeting Korean Young Entomologists networking meeting, which led off with drones for delivering biocontrol insects and concluded with a trio of researchers fresh off the plane from South Korea to talk (in Korean; with slides in English) about their impressive latest research on the medical benefits of eating silkworm proteins. I was impressed with the research, and spent the last few months reading the English language scientific literature on silkworms for medicine and good health. The result is an overly long blog, like those 3-hour articles I used to read in the New Yorker instead of going to sleep at night; but since the blog readers mainly come here via search engines looking for information on a topic, I figure overly long is okay.

The Korean Young Entomologists (KYE) Member Symposium led off with Yong-Lak Park’s “Shooting insects from the sky: Aerial delivery of natural enemies using aerospace engineering,” and finally sometime between 9 and 10 at night (some time changes from ESA Internet site) came the silkworm presentations by Eunyoung Ahn, Hyobin Seo, and Yiseol Kim from South Korea’s Kyungpook National University. Researchers Sungpil Ryu, Taedong Kwon, Yunghi Yeo, and Mihee Cho contributed to the work, but were not present. The researchers made the point that silkworm pupae had a higher protein and amino acid content than soybeans, and were high in desirable unsaturated fatty acids that lowered blood lipid levels (anti-obesity). In rat feeding trials, powdered, freeze-dried silkworm proteins increased skeletal muscle volume when swimming was the exercise. This has obvious appeal to body builders and others involved in exercise and training seeking to increase muscle mass, strength and energy. Specific amino acids (glutamine, branched-chain amino acids, cysteine) were singled out as most important to the immune systems of athletes. A combination of silkworm proteins and exercise had multiple beneficial effects: increased antioxidants; decreased MDA and inflammatory cytokines. Swimming plus silkworm pupae also improved fat metabolism, leading to lower blood lipid levels; so a combination of silkworm protein and exercise was deemed good for promoting weight loss or combating the worldwide epidemic of obesity caused by “excess nutrition” (e.g. the trend towards super-sized portions). Other research indicated benefits involving blood cholesterol, reduced fat synthesis and accumulation, and preventing liver cirrhosis in high-fat diets. Thus, silkworm pupae are potential weight-loss foods or food supplements.

The 25-volume Dong-eui-bo-gam (동의보감) (Mirror of Eastern Medicine), published in 1613 by the legendary Korean royal physician Heo Jun (허준), called silkworm pupa a natural healthy food and nontoxic remedy for diabetes, ischemic disease and “thinning.” Modern medical research indicates Heo Jun knew what he was talking about, and was actually a couple of centuries ahead of modern Western medicine. Our knowledge of the potential medical benefits of silkworms is rapidly expanding, particularly in South Korea, China and Japan; and to a lesser degree in India, where the silkworms are often a different species feeding on oak tree leaves. We have only scratched the surface of the medical benefits of silkworms in this blog.


Medicinal Caterpillar Fungus High in Nepal’s Himalayan Mountains

December 27, 2012

CATERPILLAR FUNGI ARE not everybody’s finger food, though their beautifully-sculpted medicinal mushrooms are rich in fiber, amino acids, minerals and vitamins. The caterpillar fungus of commerce, Cordyceps sinensis, grows high in the Himalayan Mountains in the larvae (caterpillars) of equally high-altitude Asian ghost moths (genus Hepialus). An ancient medicine or tonic, caterpillar fungus is in reality part insect (mummified caterpillar) and part fungus; and perhaps a conundrum for vegetarians, who might have to take a pass on its medical benefits because of its animal kingdom (insect) component.

Cordyceps is an abundant resource of useful natural products with various biological activity, and it has been used extensively as a tonic and health supplement for subhealth patients, especially seniors, in China and other Asian countries,” write Kai Yue and colleagues at Sichuan Agricultural University in an article pre-published online in October 2012 in the Royal Pharmaceutical Society’s Journal of Pharmacy and Pharmacology.

For perhaps thousands of years (at least several hundred) in China and other Asian countries, “Cordyceps sinensis (Caterpillar fungus) has been used as a tonic for longevity, endurance, and vitality,” write Chinese Academy of Sciences researchers Zhenquan Liu et al. in an Open Access journal, Behavioral and Brain Functions. “Many studies have shown that Cordyceps sinensis modulates immune responses, inhibits tumor cell proliferation, enhances hepatic function, regulates insulin sensitivity” and modulates steroid production.

“Although Cordyceps sinensis is extensively used in Chinese medicine, it lacks scientific grounds for its efficacy,” write Liu et al. In other words, it has worked like magic for centuries; providing practical benefits, though the exact mechanisms of how it works are unknown or speculative. The Chinese researchers argue that even proponents of modern medicine objecting to traditional natural or folkloric medical treatments could benefit from studying the caterpillar fungus. Their argument is that the research results from studying the mechanisms of how the caterpillar fungus works to heal or prevent disease could also be used to develop more conventional medical or drug treatments.

Caterpillar fungus could be particularly useful for certain brain strokes, where modern medicine lacks effective drugs and treatments. ”The lack of effective and widely applicable pharmacological treatments for ischemic stroke patients may explain a growing interest in traditional medicines,” wrote Liu et al. An example is “self-medication or preventive medicine” to prevent cerebral ischemia. In this type of stroke, brain oxygen levels are too low; which can trigger a cascade of biological events leading to brain damage and death. Caterpillar fungus prevents or protects against this type of brain stroke (“ischemia-induced brain infarction”), presumably by inducing or modulating production of a steroid, 17beta-estradiol.

Cordyceps sinensis mushrooms growing out of golden caterpillar bodies are sometimes artfully and decoratively displayed in high-end Chinese herbal shops. Caterpillar fungus achieved some notoriety when it was revealed to be a dietary supplement for Chinese athletes bringing home gold and silver medals at the 2008 Beijing Olympics.

“In China, this fungus is usually called ‘Dong Chong Xia Cao,’ which means ‘Worm in winter and grass in summer,’” write Kai Yue and colleagues at Sichuan Agricultural University. “This insect parasitizing fungus lives primarily on the head of the larva of one particular species of moth, Hepialus armoricanus Oberthur (Lepidoptera), but is occasionally found growing on other moth species. Cordyceps was first introduced to Western society during the 17th century. In 1878 Saccardo, an Italian scholar, named Cordyceps derived from China officially as Cordyceps sinensis (Berk.) Sacc., and this nomenclature has been adopted up to the present day.”

At a Nepal Overseas Entomologists members symposium at the Entomological Society of America (ESA) annual meeting in Nov. 2012, at the Convention Center in Knoxville, Tennessee, Bhishma Subedi of the Asia Network for Sustainable Agriculture and Bioresources (ANSAB) screened a 20-30 minute documentary film as part of a talk titled, “Cordyceps sinensis a natural viagara(sic) from the mountains of Nepal.” Even the other Nepali entomologists in attendance learned something new, as the caterpillar fungus is found only in remote Himalayan Mountain locales; and it is not common knowledge, even in Nepal.

Known in Nepal by its Tibetan name, yarsagumba, caterpillar fungus is well-hidden; blending like a camouflaged black joss stick into black soils and grasses on slightly north-facing (5-10 degrees) Himalayan slopes 3,200 to 4,500 meters (10,500 to 14,800 ft) high. Yarsagumba lands are several days trek from anyplace where people normally live, and the ground is covered in snow 6 months of the year. But this is where temporary high-mountain camps must be set up for hunting the difficult-to-find caterpillar fungus.

Searching for the camouflaged black and debris-covered yarsagumba means crawling on hands and knees or bending over among short grasses and melted snow. Men search for yarsagumba and other medicinal herbs in the vicinity, while women stay behind and maintain the base camps. A certain Buddhist purity is maintained in yarsagumba lands; there is no alcohol, no tobacco and no shouting, loud voices or arguing. People pray, and the first yarsagumba found is offered to the Gods.

The beauty of the mountains belie the harshness of the climate and the difficulty of the life in search of yarsagumba; it’s a tough way to earn money in these remote mountains where economic opportunities are few. Storms can come at any time, and it is easy to fall down a steep cliff when climbing in the snow. A fall near a cliff edge can mean loss of limbs and frequently death. There are no second chances, no safety nets to catch you up here. Medical treatment is do-it-yourself, by necessity. Conventional medicine and doctors are many days distant. Widows are commonplace at all ages; and many subsistence families in Nepal have lost husbands, fathers, brothers and sons during the search for yarsagumba and medicinal herbs that may help others prevail against brain strokes and other maladies.

It takes seven cleanings with a toothbrush to remove all the debris and black soil, and make the black yarsagumba look like a proper insect, namely a golden caterpillar. The going price from the middlemen is 80,000 rupees per kilo; with 3,500 to 4,000 pieces of clean golden caterpillars per kilo. It takes five people a month to find a kilo. People are doing well to come out of the season with 60,000 rupees, before the expenses of the trek and weeks or months of camp costs. Recently, the Nepal government imposed a 20,000 rupee per kilo tax or royalty on the trade.

After being steamed and packaged, most of the yarsagumba eventually is exported and finds its way to the Chinese market. The yarsagumba trade is estimated at 2 tons annually. But in Nepal, since the government-imposed 20,000 rupee/kilo royalty or tax went into effect, it was like the yarsagumba harvest had become illegal for Nepal’s subsistence mountain people. Royalties were paid on only 3 kilos in a recent year. Perhaps there is a free market and tax lesson in all this. Or perhaps it is just part of the great wheel of life.