Grapes Love Tobacco & Sage

June 13, 2015

GRAPE VINES GAIN and pests suffer when TOBACCO and SAGEBRUSH grow in the same neighborhood. For example, Chinese experiments show that when tobacco roots intermingle with grape roots, vineyards soils are progressively cleansed of the dreaded soil-dwelling phylloxera aphid; the same phylloxera aphid that almost completely destroyed French grape growing in the 1800s, before resistant rootstocks were discovered. In recent decades, the phylloxera aphid has evolved new forms that destroy formerly-resistant rootstocks. But on the positive side, the phylloxera plague in nineteenth century French vineyards was a major catalyst for innovations such as the development of modern scientific agriculture and modern methods for fumigating or disinfesting sick soils.

Tobacco plants get a bad rap today, as the source of abused and addictive products with adverse health effects. But it was not always so, and need not be so today, write David A. Danehower and colleagues in the book, Biologically Active Natural Products: Agrochemicals: “When Columbus first arrived on the shores of North America, he found Native Americans growing and using a plant unknown to Europeans. This plant held great spiritual significance to Native Americans. Scientists who followed in the footsteps of the early North American explorers would later name this plant tobacco. Tobacco (Nicotiana tabacum) farming began in the early 1600s near the Jamestown colony in Virginia. As the use of tobacco products for smoking, chewing, and snuff was promoted in Europe, tobacco became a leading item of commerce between the colonies and England. Notably, George Washington and Thomas Jefferson both farmed tobacco. Thus, the history of America is inextricably linked with the history of tobacco production.”

The specific idea of interplanting tobacco with grapevines to control soil pests like phylloxera aphids is apparently a recent Chinese agricultural innovation. Why no one thought of it before is a mystery, as nicotine from tobacco plants has a long history as a fumigant and sprayed insecticide; and more recently sweet “sugar esters” (fructose, glucose, fatty acids) have been singled out from among the several thousand chemical compounds in tobacco as “new” natural insecticides (some fungi and other microbes are also killed). Perhaps agricultural tradition plays a role, as the Chinese have an ancient agricultural heritage that includes pioneering biological pest control (e.g. predatory ants to control citrus orchard pests) and routinely interplanting compatible plants for their pest-fighting and mutually beneficial effects. Of course, growing cover crops and beneficial insect plants like sweet alyssum in grape rows is becoming more common. And since ancient times, the Mediterranean areas of Europe and the Middle East have had grape vineyards interspersed with oaks (corks, barrels for wine grapes), olive trees and crops such as wheat. But never before has tobacco been grown among grape vines to control soil pests. Indeed, modern farmers seem to favor pumping liquid chemicals and volatile gases into the soil to combat soil pests.

Perhaps as close as a nineteenth century French grape grower came was Bernardin Casanova of Corsica, France, who in 1881 patented a liquid mixture of grape distillates, Corsican tobacco, spurge, laurel, grain straw, burnt cork and soap that was rubbed and poured on the base of grapevines to kill phylloxera. In California, which has native plants that are every bit as insecticidal as nicotine from tobacco, the only anti-phylloxera interplanting seems to have been new resistant rootstocks to eventually take the place of the old. In essence, a concession of failure and a starting over with new rootstock (and pulling out the old phylloxera-infested vines).

Like Mr. Casanova in nineteenth century France, the modern Chinese researchers started out with a watery solution containing tobacco; but in a bit more scientific fashion with controlled tests of the tobacco solution on young greenhouse-grown grape vines. “The results showed that aqueous extracts of tobacco had certain alleviating effects on phylloxera infection,” according to a 2014 abstract from the journal Acta Entomologica Sinica. “Both the aqueous extracts of tobacco at the concentration of 20 mg/mL and 50 mg/mL had an inhibition to phylloxera infection,” with a 50% reduction in phylloxera infection within 3 weeks (along with a reduction of fungal invaders that kill injured grape roots).

Chinese tobacco-grape laboratory and field studies were also reported in the Journal of Integrative Agriculture in 2014. The lab studies indicated that tobacco extracts in water were indeed a valid herbal (botanical) remedy against phylloxera aphids. In three years of field tests with tobacco interplanted in infested grape vineyards, phylloxera infestations of grape roots steadily decreased each year. “Tobacco was used as the intercropping crop because it includes nicotine, which is a source of bio-insecticides,” said the researchers. “The production of new grape roots was significantly higher in the intercropping patterns than in the grape monoculture in 2010, 2011 and 2012, and the vines gradually renewed due to the continuous intercropping with tobacco over three years…The results indicated that the secondary metabolites of tobacco roots had released to soil and got to the target pest.” Tobacco intercropping effects on grape plants was also measurable in terms of “cluster number per plant, cluster weight, cluster length, cluster width, berry number per cluster, mean berry diameter in the mid portions of the cluster, carbohydrate content, fruit color index, leaf width and branch diameter.” The researchers expect that this “Successful intercropping with tobacco” will stimulate more research with other insecticidal plants to disinfest vineyard soils.

We could probably end the blog item here, or have a second article as part II, but we have some interesting interactions among sagebrush and tobacco plants that can spillover to grape vineyards. Oddly enough, sagebrush and tobacco seem to get along very well. According to M.E. Maffei, writing in the South African Journal of Botany: “Aerial interaction of the wild tobacco (Nicotiana attenuata) and sagebrush (Artemisia tridentata subsp.) is the best-documented example of between-plant signaling via above-ground VOCs (Volatile Organic Compounds) in nature.” Wounded or “Clipped sagebrush emits many volatiles, including methyl jasmonate, methacrolein, terpenoids, and green leaf volatiles.” These sagebrush volatiles (VOCs) stimulate nearby tobacco plants to become less hospitable to caterpillar pests (fewer in number). The process is called priming and results in plants producing more chemicals deleterious to pests. For readers desiring all the details and more theory: In 2006, Kessler et al. published in a journal called Oecologia under the title “Priming of plant defense responses in nature by airborne signaling between Artemisia tridentata and Nicotiana attenuata.”

Big Sagebrush, known scientifically as Artemisia tridentata, is a native North American plant that can reach 4 meters in height and live from 30 to over 200 years in arid desert environments by using hydraulic lift to pump water from deep soil layers. The plants are a rich and underutilized source of medicinal compounds, insecticides, fungicides, natural preservatives, etc. Worldwide there are at least 500 Artemisia sagebrush species, many used in traditional medicines (e.g. China), cosmetics, insect repellents, and as spices and flavorings in foods. For example, Artemisia annua has attracted attention to combat malaria. Readers desiring a crash course in Artemisia species and their bio-active essential oils will find it online in an excellent 24-page review article in a journal called Molecules.

Big Sagebrush is “found in arid regions of North America from steppe to subalpine zones, dry shrub lands, foothills, rocky outcrops, scablands, and valleys,” wrote Christina Turi and colleagues in 2014 in the journal Plant Signaling & Behavior. “Traditionally, species of Big Sagebrush have been used as a ceremonial medicine to treat headaches or protect individuals from metaphysical forces. A total of 220 phytochemicals have been described in A. tridentata and related species in the Tridentatae. Recently, the neurologically active compounds melatonin (MEL), serotonin (5HT), and acetylcholine (Ach) were identified and quantified.” In other words, sagebrush plants and human brains and nervous systems have a lot in common.

Indeed, galanthamine, a botanical drug treatment for mild to moderate Alzheimer disease, can also be used to “treat” sagebrush. Galanthamine, which is named after the snowdrop plants (Galanthus species) where it was discovered, is also found in Narcissus and other common bulbs. Galanthamine is, according to researchers Turi et al., “a naturally occurring acetylcholinesterase (AchE) inhibitor that has been well established as a drug for treatment of mild to moderate Alzheimer disease.” Why bulb plants produce chemicals affecting both Alzheimer disease (human nervous systems) and sagebrush plants is a good question. One theory is that plants release these chemicals into the environment to communicate with and influence the behavior of other plants, and also perhaps deter or otherwise influence herbivorous animals. Environmentalists, overly preoccupied with worries about carbon dioxide and GMOs, might ponder the fact that human chemicals with medicinal effects released into the environment might be the bigger threat, affecting plants and ecosystems in ways not yet fully appreciated that may comeback to bite us.

The Western USA is known for its vast expanses, perhaps 50 million acres with Big Sagebrush, some of which is being displaced for vineyards in isolated valleys in the Pacific Northwest. I particularly like the description of the Big Sagebrush ecosystem at the Sage Grouse Initiative: “To many of us, sagebrush country symbolizes the wild, wide-open spaces of the West, populated by scattered herds of cattle and sheep, a few pronghorn antelope, and a loose-knit community of rugged ranchers. When you stand in the midst of the arid western range, dusty gray-green sagebrush stretches to the horizon in a boundless, tranquil sea. Your first impression may be of sameness and lifelessness—a monotony of low shrubs, the over-reaching sky, a scattering of little brown birds darting away through the brush, and that heady, ever-present sage perfume.”

About 90% of the native sagebrush steppe habitat in the eastern Washington grape growing area was removed to make way for the vineyards. But the 10% remaining sagebrush habitat may have important ecological benefits, such as improved natural or biological pest control in the vineyards. One suggestion is to leave some of the native Big Sagebrush around vineyards, for its beneficial ecological effects. “Perennial crop systems such as wine grapes have begun using cover crops and hedgerows to increase beneficial insects and promote sustainable vineyard management in areas like New Zealand and California,” Washington State University researcher Katherine Buckley told the 2014 Entomological Society of America (ESA) annual meeting in Portland, Oregon. “However, in arid wine growing regions such as eastern Washington, cover crops are often prohibitively expensive due to water costs. We wanted to determine if native plants, which require little or no irrigation, could be used to increase beneficial insects and enhance conservation biological control of vineyard pests in eastern Washington.”

The native sagebrush steppe ecosystem has a wide range of plants, but is characterized by species such as big sagebrush (Artemisia tridentata), rabbitbrush (e.g. Chrysothamnus, Ericameria spp.), bitterbrush (Purshia spp.) and perennial bunchgrasses (e.g. Agropyron, Stipa, Festuca, Koeleria, Poa spp.). The Big Sagebrush ecosystem is richer in species than meets the eye at first glance. Over 100 species of birds (e.g. sage grouse, sage thrasher, sage sparrow and Brewer’s sparrow) forage and nest in sagebrush communities, and they could provide a lot of insect biocontrol at less cost and with less environmental impact than chemical sprays.

A U.S. Forest Service report called Big Sagebrush a keystone species and “a nursing mother” to “31 species of fungi, 52 species of aphids, 10 species of insects that feed on aphids, 42 species of midges and fruit flies that induce galls, 20 species of insects that parasitize the gall inducers, 6 species of insects that hibernate in big sagebrush galls, 18 species of beetles, 13 species of grasshoppers, 13 species of shield-back katydids, 16 species of thrips, 74 species of spiders, 24 species of lichens, 16 species of paintbrushes, 7 species of owl-clovers, 5 species of bird’s beaks, 3 species of broom rapes, and a host of large and small mammals, birds, and reptiles.”

“After locating vineyards with some form of native habitat restoration in four different growing regions of eastern Washington, yellow sticky traps and leaf samples were used to monitor beneficial and pest insect numbers in the habitat restored vineyards and nearby conventional vineyards over a three year period,” said Buckley. The native plants, which are adapted to the region’s hot summers and cold winters, are home to at least 133 insect species. Native habitat vineyards had fewer pest insect species; and higher populations and a higher diversity of beneficial insects. Anagrus wasps, which are known to parasitize pesky grape leafhoppers, were most abundant in Big Sagebrush. More amazingly, this leafhopper biocontrol wasp was found year-round in Big Sagebrush, even when the plant was not flowering. No other plant, not even the photogenic wild roses planted at the end of vineyard rows and admired by tourists, hosted the tiny leafhopper biocontrol wasp year-round.

Garden herbs such as thyme (Thymus ssp.), mugwort (Artemisia ssp.) and fennel (Foeniculum ssp.) have all been tested in vineyard interrows because they are fungicidal against Botrytis cinerea, a fungus attacking grape clusters, and boost soil micro-nutrients like copper, manganese and zinc. Maybe at some point in time, the Chinese interplantings of tobacco and alternating strips of Big Sagebrush (or other Artemisia species) and garden herbs will all get integrated together with other cover crops and native hedgerows into grape vineyards for a more biological or natural approach to agriculture. With sagebrush and tobacco, we have only scratched the surface of vineyard possibilities.


Silicon Bed Bug Weaponry

May 4, 2015

BED BUGS CAN be spiked and trapped by tiny spears like leaf hairs, and can become dehydrated or dessicated and rendered harmless by certain forms of silicon, the second most abundant element in planet Earth’s crust (28%) after oxygen (47%). That silicon can be the bane of bed bugs is indeed odd when one considers that silicon permeates our world from beach sands, opals, agates and quartz crystals to sandpaper, semiconductors, glasses, ceramics, optical fibers and cosmetic products. Indeed, the famous French scientist and silkworm entomologist, Louis Pasteur, whose name has become synonymous with the germ theory of medicine, predicted silicon’s eventual service in human medicine; though Pasteur was probably not thinking along the lines of silica gels and desiccant diatomaceous earth dusts as remedies for the 21st century’s worldwide medical plague of bed bugs.

Despite its commonness in nature and the human environment and potential uses in human medicine, the use of silicon products comes with caveats to users, who might want to wear sufficient protective clothing and respirators to avoid inhaling the products. Strangely enough, that much maligned metabolic waste product, carbon dioxide, which along with sunlight is essential to photosynthesis and life on planet Earth, is perhaps a safer component (e.g. as a lure or attractant) when integrated into bed bug traps. Food grade diatomaceous earth made from freshwater diatoms is considered relatively nontoxic; whereas filtering grade diatomaceous earth (e.g. the type used for swimming pool filters) is a crystalline form with inhalation toxicity.

“Louis Pasteur (1822-95) said that silicon would prove to be a treatment for many diseases and in the first quarter of the twentieth century there were numerous reports by French and German doctors of sodium silicate being used successfully to treat conditions such as high blood pressure and dermatitis,” wrote British chemist John Emsley in his superb compendium, Nature’s Building Blocks (An A-Z Guide to the Elements). “By 1930, such treatments were seen to have been in vain and the medication fell out of favor. So things rested, until the discovery that silicon might have a role to play in human metabolism, and then followed suggestions that it could have a role in conditions such as arthritis and Alzheimer’s disease, but no new treatment based on these suggestions has yet emerged. Meanwhile, silicon continues to be linked with a disease of its own: silicosis. Miners, stone-cutters, sand-blasters and metal-grinders develop this lung condition which is a recognized occupational disorder caused by the inhalation of minute particles of silica…” Symptoms include coughing, wheezing and shortness of breath; a more aggressive form of silicosis associated with certain types of asbestos can develop into lung cancer and has been a rich source of litigation for occupational exposure in the USA.

While silica products should be used sparingly (a caution that should also apply to most sprays) or not at all by some people (e.g. existing respiratory problems; perhaps seek a medical opinion before using), they might prove for many others the tipping point for winning the bed bug war as part of an integrated approach that controls bed bugs (many of which are pesticide resistant) using a multiple arsenal of weapons including herbal oils, clutter reduction, heat, sealing crack and crevice harborages, traps, pheromones, carbon dioxide, vacuuming under baseboards, etc.

At the 2014 Entomological Society of America (ESA) annual meeting, Kyeong-Yeoll Lee of South Korea’s Kyungpook National University (Daegu) reported that silica in the form of diatomaceous earth (Perma-Guard(TM) or Fossil-Shell(R)) acted as a synergist when heat (hot air) fumigations substituted for chemical fumigants such as methyl bromide. Though the test insect was Indian meal moth, a worldwide pest of stored grain and many other packaged agricultural products, it would not be surprising to find that heat treatments combined with silica products like diatomaceous earth will also prove efficacious and perhaps also synergistic against bed bugs. Indeed, heat treatments may induce bed bugs to move around more, which could hasten contacting diatomaceous earth and water loss.

At the same 2014 ESA meeting, Virginia Tech (Blacksburg, VA) researcher Molly Stedfast provided some impressive results via the time-consuming process of first educating apartment residents about bed bugs and then painstakingly vacuuming along baseboards to suck up as many bed bugs as possible before applying the silica products under the baseboards to further reduce bed bug populations. This integrated (IPM; integrated pest management) approach required quite a bit of manual labor, as furniture had to be moved to gain access to the baseboards before vacuuming and then applying silica gel or dust products.

Stedfast tested two silica products, Mother Earth(TM) D, a highly-absorptive desiccant dust made from 100% freshwater diatomaceous earth, and CimeXa(TM) Insecticide Dust, a 100% amorphous silica gel. The silica dust or gel injures the insect cuticle (outer protective “skin”), letting water leak out and leading to dehydration (providing relative humidity is not extremely high, above 81%; and free water is unavailable). Both the diatomaceous earth and silica gel products were “very effective at killing bed bugs even at 10% of the label rate.” Going above the label rate was a waste of resources, as only so much product can contaminate the bed bugs. Bed bugs can die within 24 hours of contacting the silica products, but air currents that blow the dusts around can be a problem; also the products need to stay moist and not dry out to be effective. Among Stedfast’s biggest headaches is the application equipment, which was not very robust.

The patent literature reveals that inventors such as Roderick William Phillips in Vancouver are working on improved spray apparatuses for applying diatomaceous earth: “There is disclosed a spray apparatus for holding contents comprising diatomaceous earth and a compressed propellant for propelling the diatomaceous earth. There is also disclosed use of diatomaceous earth to control a population of bedbugs…diatomaceous earth, a naturally occurring siliceous sedimentary rock that includes fossilized remains of diatoms. However, known methods of applying diatomaceous earth can be cumbersome. For example, known methods of applying diatomaceous earth may undesirably require handling the diatomaceous earth, for example to transfer the diatomaceous earth from a container not having an applicator to a separate applicator apparatus. Also, known applicator apparatuses may apply diatomaceous earth unevenly, which may be wasteful or ineffective. In general, known methods of applying diatomaceous earth may be sufficiently complex so as to require professional involvement, which may undesirably add to cost and delay of bedbug treatment. Also, numerous types of diatomaceous earth are available, and different types of diatomaceous earth vary widely and significantly from each other. It has been estimated that there are approximately 100,000 extant diatom species…and may vary widely and significantly in size and shape across a very large number of diatom species…”

At the University of British Columbia (Vancouver), Yasmin Akhtar and Murray Isman demonstrated that both diatomaceous earth and herbal or botanical compounds such as neem, ryania and rotenone are to varying degrees transported by adult bed bugs and contaminate other adults and younger bed bug nymphs. “Our data clearly demonstrate horizontal transfer of diatomaceous earth and botanical insecticides in the common bed bug,” said Akhtar and Isman. “Use of a fluorescent dust provided visual confirmation that contaminated bed bugs transfer dust to untreated bed bugs in harborage. This result is important because bedbugs live in hard-to-reach places and interaction between conspecifics can be exploited for delivery and dissemination of management products directed at this public health pest…This result is important because bedbugs live in hard-to-reach places (cracks, crevices, picture frames, books, furniture) and as such interaction between the members of the colony can be exploited for delivery and dissemination of control products.”

At the 2014 ESA annual meeting, Akhtar suggested protecting travelers and suppressing bed bug transit by building diatomaceous earth into luggage, mattresses and fabrics. Diatomaceous earth provided 96% repellence; bed bug mortality was zero at 24 hours, but 93% after 120 hours. Diatomaceous earth could also be applied to box springs, dressers and headboards, and under carpets and inside drywall. A diatomaceous earth aerosol provided 81% bed bug mortality at 30 days, and was still active and being transferred from dead bed bugs to live bed bugs.

Diatom species mined for diatomaceous earth are stunning in their architectural variety and beauty. Ultimately, the silicon secrets of living diatoms has the potential to transform “the manufacture of siloxane-based semiconductors, glasses, ceramics, plastics, elastomers, resins, mesoporous molecular sieves and catalysts, optical fibers and coatings, insulators, moisture shields, photoluminescent polymers, and cosmetics,” wrote UCSB marine scientist Daniel E. Morse. “The manufacture of these materials typically requires high temperatures, high pressures or the use of caustic chemicals. By contrast, the biological production of amorphous silica, the simplest siloxane [(SiO2)n], is accomplished under mild physiological conditions, producing a remarkable diversity of exquisitely structured shells, spines, fibers and granules in many protists, diatoms, sponges, molluscs and higher plants. These biologically produced silicas exhibit a genetically controlled precision of nanoscale architecture that, in many cases, exceeds the capabilities of present-day human engineering. Furthermore, the biological productivity of siloxanes occurs on an enormous scale globally, yielding gigatons per year of silica deposits on the floor of the ocean. Diatomaceous earth (composed of the nanoporous skeletons of diatoms) is mined in great quantities from vast primordial deposits of this biogenic silica.”


Herbal Oils Blast Bed Bugs

March 28, 2015

HERBAL OILS such as NEEM can reduce bed bug populations when integrated with other pest control technologies such as traps. As desperation hits with more bed bug populations resistant to more conventional synthetic pesticides, more herb and essential oil formulations and fumigations, as well as silicon dioxide-based gels and dusts such as diatomaceous earth, are being integrated with other bed bug remedies such as clutter reduction and heat fumigation.

Those in thrall to chemical industry protocols adhere to the standard that a remedy must kill 95% in laboratory tests. But it is most often a hypocritical standard, as over time bed bugs are almost guaranteed to become genetically selected for resistance to widely used synthetic pesticides. According to Virginia Tech researchers: “A frightening resurgence of bed bug infestations has occurred over the last 10 years in the U.S. and current chemical methods have been inadequate for controlling this pest due to widespread insecticide resistance…While DDT was initially effective for bed bug control, resistance to the cyclodienes was well documented among different bed bug populations by 1958…bed bugs had developed resistance to organophosphate insecticides, including malathion by the 1960s…While there have been many hypotheses regarding the cause of the bed bug resurgence, the cause is at least partially explained by bed bug resistance to insecticides, in this case, those in the pyrethroid class,” including deltamethrin resistance in New York City bed bugs.

To that conclusion, I would add “over-reliance on synthetic chemical pesticides” to the exclusion of designing habitations to be inhospitable to bed bugs and alternative control methods. Oddly enough, herbal remedies not killing 95% are often subject to persecutory calls of marketplace banishment by the EPA, FDA, FTC or one of the myriad other USA.gov regulatory bureaucracies. An Alternative in the Internet age is letting people decide for themselves via Internet search engines before buying. To some extent, government regulation of herbal pest control efficacy is unnecessary when scientific test results can be posted on the Internet and debated.

An integrative approach can make excellent use of herbal remedies providing perhaps 40% or 60% bed bug reduction; in conjunction with heat treatments, sharp silicon dioxide crystals and other remedies that collectively might add another 30%, 40% or 50% bed bug reduction. It’s all mathematics, which many people hate; but nonetheless a 60% bed bug reduction from an herbal remedy combined with a 40% reduction from clutter reduction, heat fumigation or traps can easily equal over 95% control (the laboratory standard adhered to by those one-trick chemical ponies sometimes called “nozzle heads”).

In other words, herbal oils and other alternative treatments can leverage themselves when intelligently combined with other pest control methods such as heat, clutter reduction and traps. That should be intuitive, but it runs counter to the entomology training of the average PhD in the USA. The late “Professor (Robert) van den Bosch of the University of California was one of the developers of Integrated Pest Management” (IPM) and an advocate of biological controls; and he made the case for a multi-faceted approach to cotton and food crop pests long ago in books like The Pesticide Conspiracy (University of California Press).

Bed bugs and the urban environment of hotels, apartments, cracks, crevices, mattresses, trains, buses, backpacks and luggage of course present a different set of problems than a homogeneous field of crops or a laboratory spray arena. But you be the judge of whether herbal fumigations work against bed bugs: At the Entomological Society of America annual meeting, Korean researcher Jun-Ran Kim (Rural Develop Admin, Suwon-si Gyeonggi-do, South Korea) compared 120 herbal or botanical essential oils to the best conventional pesticides for controlling insecticide-susceptible and insecticide-resistant adult bed bugs hiding in protected places (as bed bugs do; e.g. cracks, crevices, inside electrical sockets).

Kim singled out two essential oils, those from peppermint (Mentha piperita) and myrtle (Myrtus communis) plants, as most effective and worth further development as bed bug fumigants. So, should the headline read: “Essential Oils a Failure as Bed Bug Fumigants,” as 118 of 120 essential oils did not make the cut. Indeed, fewer than 2% of the botanical oils tested, peppermint and myrtle, were singled out as potential bed bug fumigants. Or should the headline read: “Essential Oils Effective Bed Bug Fumigants,” or “Peppermint and Myrtle Oils Prove Essential Oils Can Work as Bed Bug Fumigants.”

Rue, an ancient herb, needs to be tested against bed bugs. Natural products researchers report: “An infusion of Ruta chalepensis leaves rubbed onto skin has been purported to be repellent to mosquitoes and other insects by farmers and shepherds in rural and mountainous areas of Marche and Latium, Central Italy. In the same Italian countryside, Ruta graveolens leaves were set under the bed to repel bugs and mice (Guarrera 1999). A decoction of Ruta species also has been used topically against scabies, lice, and fleas, to repel insects and to treat intestinal worms in livestock.”

Intriguingly, rather than following up on rue under the bed to fight bed bugs, Italian researchers veered off in another direction: Rue, as a sustainable weed control alternative for corn field weeds such as purslane and pigweed: “Poisonous plants are neglected sources of natural herbicides. An infusion of such a plant rue (Ruta graveolens L.) was tested…rue infusion (100 g/l) and its isolated allelochemicals…open up a promising avenue in the search of natural herbicides.”

Other researchers envision the disease-fighting properties of herbs such as rue and powders such as sodium bicarbonate (baking soda or bicarbonate of soda) being harnessed as alternatives to synthetic fungicides. Indeed, in organic and sustainable conventional farming, rue “at low rates…may lessen the onset of fungicide resistance” against powdery mildew, brown spot and other plant diseases in diverse crops, including strawberries.

Italian researcher Giovanni Aliottal and colleagues in a paper titled “Historical Examples of Allelopathy and Ethnobotany from the Mediterranean Region,” write: “Ruta graveolens L. (Rutaceae), or common rue, originating in Southern Europe, is an evergreen shrub with bluish-green leaves that emits a powerful odour and has a bitter taste. The plant is cited in the ancient herbals and has deep roots in folklore, alchemy and even demonology. Rue has been regarded from the earliest time as successful in warding off contagion and preventing the attacks of fleas and other noxious insects. The name rue derives from the Greek “reuo” (= to set free), because the plant is efficacious in various diseases. Rue was the chief ingredient of the famous antidote to poison used by Mithridates. It was also known to produce erythema and pustular eruptions on human skin. Many remedies containing rue as well as its abortive properties were mentioned by Pliny the Elder in his Naturalis Historia (XX, 143). In Europe, rue was considered a powerful defense against witches during the Middle Ages. Piperno, a Neapolitan physician, in 1625, recommended rue as a treatment for epilepsy and vertigo. Today, the aerial parts of the plant are eaten in Italian salads, and are said to preserve the eyesight. Rue is currently mentioned in the pharmacopoeias of 28 countries where it is considered mainly as a stimulating, antispasmodic, diuretic and emmenagogue. Moreover, fresh and dried leaves are used to preserve and to flavour beverages and foods such as liquor (grappa) and wine, cheese and meat.”

Ruta graveolens is the scientific name for garden rue or herb-of-grace, one of about 1,500 species in the plant family Rutaceae (includes oranges, lemons, other citrus). A native of the Balkans and southeastern Europe grown worldwide, rue is known as sudab or sadab in India, arvada in Tamil, aruda in Singhalese, gedung minggu in Javanese and geruda in Malay. Ruta chalepensis is the scientific name for fringed rue, Aleppo rue or Egyptian rue. Rue researchers D. H. Tejavathil and B. L. Manjula in India summarize: “Ruta graveolens L., a member of Rutaceae, is well known for its wide utilities such as ornamental, aromatic and culinary in addition to medicinal properties. Medicinal value of this taxon is attributed to the accumulation of flavonoids, furanocoumarins, acridine alkaloids, furanoquinolins and also essential oils which led to its recognition as one of the sought after traditional medicinal plants by pharmaceuticals.” Perhaps a bit dangerous, too; according to Egyptian researchers: “On moist skin in direct sunlight, it leads to photosensitivity. The essential oil is a central nervous system depressant and at high doses has become a narcotic.”

A major rue essential oil component, 2-undecanone, is nicely summarized in wikipedia: “2-Undecanone is used in the perfumery and flavoring industries, but because of its strong odor it is primarily used as an insect repellent or animal repellent. Typically, 1–2% concentrations of 2-undecanone are found in dog and cat repellents…” According to its web site claiming “invention” by Dr. R. Michael Roe and referencing 3 patents: “North Carolina State University is currently seeking an industry partner to commercialize a novel, natural insect repellent for mosquitoes, ticks, chiggers, bedbugs, house dust mites, cockroaches, and other pests…A researcher at North Carolina State University has discovered that undecanone and related structures are repellents of mosquitoes, ticks, bed bugs, cockroaches, thrips, aphids, deer flies, gnats and other animals. In some tests, these compounds were found to be more effective than DEET…”

The Flowers of Chania web site provides a nice overview of rue species used as medicine in Crete, grown in Netherlands botanical gardens, and mentioned in Shakespeare’s Hamlet. Unlike the Balkan bean leaf remedy for spearing bed bugs, which has recently sparked the interest of those desperate for bed bug remedies, medicinal plants in the rue family known since ancient times have escaped scientific scrutiny against bed bugs. Probably much to the delight of bed bugs worldwide. According to researchers in India, “The most frequent intentional use of the plant has been for induction of abortion.” If only that powerful rue activity could be integrated to naturally abort bed bug populations just enough to allow humans a more bite-free sleep.

On the Internet are a varied array of commercial products with herbal essential oil and soap (detergent) ingredients sold for potential use against bed bugs (and usually other pests, as well). The herbal ingredients do not need extensive safety testing, as they are GRAS (Generally Recognized as Safe) substances commonly found in foods, cosmetics, etc.

According to the USA FDA (Food and Drug Administration) web site: ““GRAS” is an acronym for the phrase Generally Recognized As Safe. Under sections 201(s) and 409 of the Federal Food, Drug, and Cosmetic Act (the Act), any substance that is intentionally added to food is a food additive, that is subject to premarket review and approval by FDA, unless the substance is generally recognized, among qualified experts, as having been adequately shown to be safe under the conditions of its intended use, or unless the use of the substance is otherwise excluded from the definition of a food additive. Under sections 201(s) and 409 of the Act, and FDA’s implementing regulations in 21 CFR 170.3 and 21 CFR 170.30, the use of a food substance may be GRAS either through scientific procedures or, for a substance used in food before 1958, through experience based on common use in food.”

In other words, if there is a long tradition of eating the stuff and smearing it on your body, it is likely not to need hundreds of millions of dollars and decades of testing and regulatory agency compliance like a pharmaceutical product. So, you don’t have to wait 15 years for a bed bug remedy that will be several times more costly (to recoup the regulatory expenses) than what is already available. Being publicly sold on the Internet, samples of these GRAS pesticide products can often be obtained free of charge by researchers for scientific studies. Sometimes the studies, even if taxpayer or public funded, are published in respected commercial journals and hidden from public perusal behind formidable paywalls. But Internet search engines can usually at least turn up abstracts, media reports and summaries of varying quality and usefulness.

Rutgers researchers compared 11 herbal and detergent products (e.g. Sodium Lauryl Sulfate) and two synthetic pesticide products against bed bugs. A nice summary by the researchers published in an industry trade publication and titled “Natural Pesticides for Bed Bug Control: DO THEY WORK?” was made freely accessible via the Internet. Bed bugs were placed in laboratory chambers offering no escape from spray contact; a valid approach for most product comparisons. But given that many bed bug populations are pesticide resistant and that in real rooms bed bugs hide and avoid spray contact, real world results are usually lower than the lab numbers. These are more or less truisms, for both botanical and synthetic pesticide products. Which is why pest control operators often are called back to spray multiple times over several months or years; and why you need an integrative approach (relying on more than just sprays) and plenty of patience to rid yourself of bed bug infestations. A quick overview of integrative bed bug alternatives with a resource list is found in the Jan. 2015 issue of the IPM Practitioner (as of this writing, still available for free Internet download).

According to the Rutgers researchers, Temprid SC [Imidacloprid (21%) and Beta-Cyfluthrin (10.5%)] killed 100% of exposed adult bed bugs coming in contact with the spray in three days, and “was significantly more effective than Demand CS” [Lambda-Cyhalothrin (9.8%)]. The best herbal formulations were a bit slower: “EcoRaider and Bed Bug Patrol were the most effective biopesticides in both tests. EcoRaider [Geraniol (1%), Cedar Extract (1%) and Sodium Lauryl Sulfate (2%)] caused 100 percent mortality after 10 days in both tests. Bed Bug Patrol [Clove Oil (0.003%), Peppermint Oil (1%) and Sodium Lauryl Sulfate (1.3%] caused an average of 92 percent and 91 percent mortality after 10 days in the first and second experiment, respectively. Neither of these two products caused more than 75 percent mortality at three days after treatment…Bed Bug Bully [Mint Oil (0.25%), Clove Oil (0.3%), Citronella Oil (0.4%) and Rosemary Oil (0.4%)] caused 60 percent mortality after 10 days.”

Thus, the need for a patience and a multi-faceted, integrative approach to bed bug control using herbal or synthetic pesticides, tiny leaf hair-like spikes, CO2, traps, heat, cold, steam, mattress encasements, vacuuming, pheromones, clutter reduction, diatomaceous earth, silica gels, etc. If winning the war against bed bugs were easy, the insects would have been extinct long ago and you would not be reading this.


Termite Power! (Green/Alternative Energy)

February 25, 2015

TERMITE BIOMASS ENERGY conversion offers a potential 95% to 99% efficiency in converting woody plants into usable energy forms comparable to ethanol fuels and petroleum products. “Termites are regarded as harmful because of the ability to decompose cellulosic materials such as houses made of wood,” said University of the Ryukyus (Okinawa, Japan) researchers Toru Matsui, Gaku Tokuda and Naoya Shinzato in the journal Recent Patents on Biotechnology. However, “Termites and/or their symbionts (e.g. gut protozoa & bacteria) are potentially good resource of functional genes for industrial applications…for biomass utilization, environmental remediation, and fine-chemicals production.”

Several termite genes have already been patented for biofuel (cellulase) and fighting infections (antimicrobial peptides). Combinations of cellulase enzymes and anaerobic symbionts have also been harnessed to produce hydrogen fuel (H2 gas) from waste plastics. “Lignin treatment by anaerobic bacteria from the gut of” several termite species has also been patented; thus pointing towards a greener pathway in place of today’s less environmentally-friendly caustic chemical processes. Termite energy production mechanisms might also be released as Open Source scientific information, instead of patented, as was once common in the scientific world. Indeed, the real practical innovations for sustainable world energy production may be in turning the raw material of biological science basic research into economical applied chemical engineering and bio-engineering solutions. In other words, a new energy production landscape dotted with bio-refineries approaching the 95% to 99% energy conversion efficiency of termite guts digesting woody plant and fiber materials is an objective worth working towards.

Being an ancient insect order, termites have been tapping into Earth’s abundant woody plant resources for perhaps 400 million years; well before dinosaurs and then humans roamed and pillaged the planet. “Cellulose is the most abundant biomass on the earth,” write the Ryukyus researchers. “Termites thrive on plant biomass, in which the major constituents are cellulose, hemicellulose (i.e. non-cellulosic carbohydrates), and lignin…In addition, it can be hydrolyzed to give a sugar pool which can be subsequently fermented to form ethanol, etc. However, the crystalline nature of cellulose had made it difficult to economically convert into useful chemical feedstocks…Other than cellulosic materials decomposition, there could be symbionts degrading lignin-derived compounds, a significant part of the wood constituents.”

At the hops-soaked Entomological Society of America (ESA) annual meeting in Portland, Oregon, the parallels between microbrewing (hops & microbes), baking (yeasts; Voodoo donuts) and termite guts as fermentation vats (bio-refineries) producing energy fuels was bubbling just below the surface. Several research labs, including Michael Scharf’s Purdue University lab, are evaluating the genes and metabolic processes innate to termites as well as the contributions of protozoa, bacteria and other microbes living as symbionts in termite guts and helping digest plant lignins and cellulose into usable energy compounds. Figuring out how termites and their gut microbes are such efficient converters of plant matter into energy is a huge undertaking, even with the latest DNA and genetic tools.

Brittany Peterson, an ESA termite biofuel presenter working in Scharf’s lab writes on her web page about “the co-evolution of termites and their over 4,000 symbiotic microorganisms.” The implication being that the termite hindgut is a bio-refinery where termites and their microbial symbionts constitute the equivalent of a vast unknown ecosystem whose parameters are just now being delimited. Peterson and the Scharf lab view termite guts as a model system for studying synergy and biomass processing of tough toxins like lignin. In other words, as the basis and inspiration for designing green bio-refineries for alternative energy and feedstock production processes more energy efficient than turning food crops like corn into ethanol fuel.

Of course, this means figuring out exactly how termites and their several thousand hindgut microbes extract simple sugars from wood’s complex lignin-cellulose polymer structure. This termite/microbe “digestion” (or depolymerization) has an amazing 95%-99% efficiency that industrial biomass processing or biofuel production cannot match even using very toxic caustic chemistries. Most research on termite gut microbes has focused on protozoa, but Peterson envisions adding bacteria and termite-produced enzymes to create a synergistic bio-refinery mixture. In other words, replacing current caustic and energy inefficient biomass conversion chemistries with greener, more energy efficient biological technologies composed of termite-derived enzymes, bacteria and protozoa to depolymerize biomass and produce usable sugars/energy.

The synergy of termite (host) and gut microbes likely makes possible the observed over 95% lignin-cellulose biomass processing efficiency; 82% of the genes for lignin-cellulose processing, including high expression of cellulase enzymes, come from or are innate to the termite itself rather than the symbiotic gut microbes, Peterson told the ESA annual meeting. Though the termite-microbe synergism boosts the the energy efficiency to quite high levels approaching 100%. At least for woody materials.

Interestingly, though, when termites eat paper, most of the biomass processing genes come from the gut microbes. Thus, a quite complex digestive ecosystem that seems to vary greatly with the food (feedstock) input. The gut microbes also help termites detoxify harmful materials and provide antioxidant protection. Scientific bioassays using various combinations of antibiotic drug treatments and anti-protozoa diets are enabling the Scharf lab to construct a microbial “library” for continuing research, Peterson told the ESA. Recent experiments with bacteria isolated from the subterranean termite Reticulitermes flavipes, indicate that the bacteria either alone or via interaction with protozoa boost glucose (sugar; an energy feedstock) release from lignin-cellulose (plant) biomass.

In the future, it is conceivable that bio-refineries using termite enzymes, bacterial enzymes and protozoa will make today’s ethanol and biomass to energy conversion processes look like toxic, inefficient relics of a primitive industrial energy production past. But it will likely be many more years before bio-engineers and chemical engineers are ready to begin the commercial harvest of termite energy to power our vehicles, the Internet, etc.


Termites Eating Wood, Are Human Medicine

January 2, 2015

[Note to Search Engines: This is Not Another Termite Poop Story.]
Antibiotic-Resistant Bacteria Beaten by Termite Innate Immune System (the science part)

Antiseptic procedures and germ theory, stuff now routine like doctors and nurses washing their hands to avoid contaminating patients, entered modern medicine via 19th-century applied entomology aimed at solving a mysterious silkworm population decline baffling Italy’s Agostino Bassi and France’s Louis Pasteur (See blog, The Mysteries of Colony Collapse). Today, Pasteur might be looking over the shoulder of Yuan Zeng in Xing Ping Hu’s Urban Entomology Lab at Auburn University, wondering how termites make themselves more robust and immune to disease. After working with silkworms and formulating modern germ theory, Pasteur realized that “the exclusive emphasis on the germ theory of contagious disease” was a very incomplete view of reality in need of modification; a radical notion that would be opposed by many in modern medicine even today, as germ theory has attained the status of orthodoxy and relegated the alternatives to the fringes.

Pasteur told colleagues that if he had the chance to go back to silkworm entomology again he would focus on nutrition, the environment and physiology (e.g. immunity) to increase robustness, vigor and disease resistance. Stuff that would be cutting edge in the 21st century. Stuff like termite entomologist Yuan Zeng’s study of how termite “innate immune systems” overcome MultiDrug Resistant (MDR) bacteria infecting over 2 million people annually in the USA. MDR bacteria in the USA annually kill over 23,000 “because they are untreatable with today’s drugs,” Zeng told the Entomological Society of America (ESA) annual meeting. MDR bacteria are also becoming “a significant global health threat.” An excellent YouTube video of Yuan Zeng describing her Auburn University research on termites defeating MDR bacteria is now available.

Zeng’s previous research with powdered extracts of Eastern subterranean termites (Reticulitermes flavipes) against bacteria causing human gastric distress lends credibility to traditional folk medicines containing insects. “Our previous research on disease resistance in R. flavipes workers showed that the crude extract of naive termites constitutively displayed a broad-spectrum antibacterial activity including agents responsible for human gastric infections,” Zeng told the ESA annual meeting. The logic behind using termites as medicines or drugs is that subterranean termites forage and nest in soil loaded with pathogenic microbes, making them a “source for novel antimicrobial discovery because they have evolved effective innate immune systems in confronting various harmful microorganisms.”

If a termite species is both pest and medical cure, then might an alternative to chemical fumigation be to harvest (e.g. trap or vacuum) the termites and sell them as a medicinal crop? That is a question that rarely, if ever, is asked. “Science has already proven the existence of immunological, analgesic, antibacterial, diuretic, anesthetic, and antirheumatic properties in the bodies of insects,” wrote Brazilian researcher Eraldo Medeiros Costa-Neto in an article titled ENTOMOTHERAPY OR THE MEDICINAL USE OF INSECTS. “Since early times, insects and the substances extracted from them have been used as therapeutic resources in the medical systems of many cultures. Commonly considered to be disgusting and filthy animals, many insect species have been used live, cooked, ground, in infusions, in plasters, in salves, and as ointments, both in curative and preventive medicines.”

Florida is the place where all the termites of the world seem to be coming to live. The Palm Beach, Florida, TV news recently warned of a Caribbean invasion of conehead or tree termites, known scientifically as Nasutitermes corniger. Conehead termites avoid competing with subterranean termites by building “beach-ball size” nests above ground and “brown tubes up the outside walls of houses,” and according to the TV make wood look like “shredded wheat.” Even “aggressive spraying” dating back to 2001 failed in its goal of eradication, and 100 million conehead termites nesting in 120 colonies amongst 42 properties were sprayed in 2012. Conehead termites, which are “distributed from southern Mexico to northern Argentina and the West Indies,” are “commonly used in traditional medicine in Northeast Brazil,” say scientists in Brazil. No doubt the coneheads will turn up again and again in Florida until they are finally accepted as residents. That is the nature of invasive insects.

Perhaps instead of chemical eradication programs, these termites should be harvested and exported to Brazil and elsewhere for medical use. “With the increase in microbial resistance to antibiotics, the use of natural products represent an interesting alternative for treatment,” wrote Henrique Coutinho and his Brazilian colleagues in an article titled “Termite usage associated with antibiotic therapy.” Crushed and powdered conehead termites mixed with a conventional antibiotic drug (which was failing, due to bacterial resistance) produced “a new weapon against the bacterial resistance to antibiotics” via a termite-drug synergy. In other words, mixing powered conehead termites with the drug made for a more powerful antibiotic medicine than using the antibiotic drug alone. At least the coneheads are good for something.

Yuan Zeng told the ESA and YouTube that she fed subterranean termites “sublethal concentrations of MultiDrug Resistant (MDR) pathogens, Methicillin-resistant Staphylococcus aureus (MRSA) or Pseudomonas aeruginosa (PAOl),” which induced “an alternation of protective proteins” produced by the termite’s innate immune system. “The composition changes of proteins following the feeding of MDRs significantly inhibited the growth of P. aeruginosa and MRSA,” said Zeng. “The results of this research could be a significant breakthrough for developing novel effective drugs” to fight human disease pathogens resistant to multiple antibiotic drugs. Worldwide, millions of people stand to benefit.

Known termite immune proteins include termicin, spinigerin, lysozome, tGNBPs, and “two unidentified proteins from several termite species with potent antibacterial and antifungal activities.” However, Zeng’s termite antimicrobial compounds are different; though there is still much scientific work to be done.

In the journal “Recent Patents on Biotechnology,” Japanese researchers Toru Matsui, Gaku Tokuda and Naoya Shinzato from University of the Ryukyus in Okinawa discussed patenting termite genes for alternative energy and drug production. “Although termites are regarded as harmful because of the ability to decompose cellulosic materials such as houses made of wood,” said Matsui et al. “Termites and/or their symbionts are potentially good resource of functional genes for industrial applications…for biomass utilization, environmental remediation, and fine-chemicals production.” Several termite genes have already been patented for biofuel (cellulase) and fighting infections (antimicrobial peptides).

A fungus-growing termite, Pseudacanthotermes spiniger, is notable for producing termicin, an antifugal peptide, and spinigerin, an anti-bacterial and antifungal peptide. “These peptides and the corresponding cDNAs have been patented as useful for protection of plants from pathogenic fungi or medical purposes,” said Matsui et al. “Similarly, some chemical antibiotic compounds isolated from termites have also been patented for the use of treating a microbial infection or disease.”

“Although entomotherapy is an ancient practice, it is still relatively unknown in the academic world,” wrote Costa-Neto. “In fact, as Holt already stressed in 1885, the advance of medical science and the suppression of folk knowledge swept away belief in the medicinal qualities of insects.”

Insect species outnumber plant species 16-fold, according to an article in The Indian Journal of Traditional Knowledge: “Yet very few researchers have concentrated on the medically useful properties of insects. Most research with insects revolves around getting rid of them.”

Medical Botany refers to plants used for medical or health purposes. But there is no entomological equivalent. Medical Entomology addresses arthropods as medical or pest problems; and by analogy is like Weed Science to Botany. Insects as medicinal cures or health enhancers are outliers, orphan science, folk healing curiosities; perhaps supermarket tabloid fodder alongside celebrity scandals and UFO abductions.

In South India winged subterranean termites (Odontotermes formosanus) are traditionally roasted in earthen pots and consumed for three evenings to treat asthma. But their anti-bacterial qualities have not been explored, “mainly because of the difficulty in harvesting large numbers.” Memo to South India: An abundance of potentially medicinal subterranean termites are ready for harvesting and roasting for export in south Florida, Hawaii, New Orleans, Auburn, Mississippi, etc. Perhaps in some distant future a doctor will say, “Take two powdered termites and some Vitamin C, and call me in the morning.”


Organic Dairies Suck Flies (CowVac)

December 5, 2014

Rest assured, a CowVac is not a veterinary vaccine of some sort that magically provides insect control or renders cows autistic. Rather, it is about producing organic milk and organic milk products like butter and yogurt. A CowVac is a suction or vacuum device incorporated into a larger trapping apparatus that removes blood-sucking flies that can be an even worse livestock plague than mosquitoes or ticks. Besides being bad economics (too expensive), pesticides repeatedly applied at ever higher doses quickly select for pesticide-resistant biting flies; i.e the flies become immune. Which is not to say that insects will not develop some ingenious solution, like holding on tighter, to avoid being sucked up by strong suction. But at least development of stronger suction devices and better ways to knock insects off animals would not add pesticide residues to the environment, food chain and human diets. A human equivalent, awaiting invention, would be an enclosure of some sort designed to knockoff and suck up (vacuum off) bed bugs before they bite (see previous blog, on bed bug desperation time innovative research).

“Seven years in the making: The Cow-Vac removes horn flies from dairy cattle” was the title of a special display at a members symposium “Honoring the Career and Contributions of Veterinary Entomologist Donald A. Rutz” at the Entomological Society of America (ESA) annual meeting in the beer brewing capital of the world, Portland, Oregon. On its web site, the Center for Environmental Farming Systems (CEFS) at North Carolina State University (NCSU) in Raleigh reports: “This innovative solution is now part of routine cattle management at the CEFS Dairy Unit and has allowed the herd to be insecticide-free for 5 years.” In other words, this “alternative fly management system” designed by Steve Denning and D. Wes Watson demonstrated “the feasibility of producing organic milk.”

“The trap removed between 1.3 and 2.5 million flies annually from the research station cattle,” Denning and Watson reported to the ESA in Portland. “Prior to the installation of the trap in 2007, the cattle routinely had horn fly populations above 1000 flies per animal and would require insecticide applications for horn fly control. With a vacuum trap in place, dairy cattle at CEFS have not required or have been treated with an insecticide.” With each of the thousand horn flies sucking blood 10-12 times per day, the blood loss and associated problems were huge (USA estimated losses are over $2.26 billion per year), and organic animal agriculture was considered questionable.

“The first walk-through pasture fly trap consisted of a covered structure designed to brush flies from the animals as they passed through, with the fleeing flies captured in the screened hollow walls,” reported Denning and Watson at the ESA meeting in Portland. “Modifications to the Bruce trap have been introduced over the years. These modified traps employ the same basic mode of action; curtains to dislodge flies and light, either natural or fluorescent, to attract flies to a cage, or bug zapper. In addition to curtains, the CowVac uses air pressure to dislodge flies, and vacuum to capture flies, trapping them in a chamber until death.” So far, the Animal Rights movement has yet to recognize a right to food (animal blood, in this case) for biting flies (also animals); and the flies die a natural death from lack of animal blood as a food source. Cruelty to animals (flies), perhaps; and fodder for an ethics debate. But if you want organic milk, butter, meat, yogurt, etc…

There are YouTube videos on the vacuum trap, and the Northeast Organic Dairy Producers Alliance has an in-depth article on the CowVac and its development by fly biocontrol specialist Tom Spalding of Spalding Labs: “…the Horn Fly is very tough to control. It’s resistant to most every chemical control. It only reproduces in cow pastures, which means there is always productive breeding material available as no one cleans up pasture pats…For the past 16 years, North Carolina State University entomologists, Dr. Wes Watson and Steve Denning, have been researching IPM practices for pest fly control for commercial livestock and poultry operations…They have seen it all, testing at least 100’s of products…repellent on most and only a few animals with pesticide, to using electric traps, light traps, walk thru traps, feed thru products, ear tags, oilers, you name it…in 2006 as Steve was watching flies get scrapped off cows going thru a walk in trap, and then following the cow out the exit and getting right back on, he had an AH HA moment of “let’s see if we could vacuum up those little buggers”…Organic Valley heard about this unit and they sponsored a test, placing 6 units on North Carolina dairies in 2012…we made a trip to Raleigh, NC to see it. I knew from our efforts using Fly Predators to control Horn Flies that this little insect was a big deal. It took a lot of work as you had to put the Fly Predators in the pastures where the cows has just been and that only worked for those doing intensive grazing. Harrowing or running a screen drag over the pastures made a big difference too, but all those things took more time than most dairymen had. If this vac thing worked it would solve a horrible problem every grazier has…We agreed to license the technology from NC State and so began the redesign for production and optimization. This is the second unlikely alignment of the stars. I run a beneficial insect company, but I’m a mechanical engineer (ME) by schooling and in the 30 years prior had started a number of high tech companies…we refined the airflow on real animals. While the simulated cow got us very close to optimized performance, we actually were blowing too much air…”


Impaling Bed Bugs on Tiny Spikes (Leaf Hairs)

October 21, 2014

KIDNEY BEAN LEAF hairs, an ancient Balkan folk remedy to ameliorate bed bugs biting like vampires in the nighttime and wee morning hours, are in essence medieval warfare pikes barbarically impaling bed bugs resistant to 20th and 21st century synthetic pesticides. The resurrection of kidney bean leaves from Balkan folklore is a measure of human desperation, and an example of an IPM (Integrated Pest Management) strategy combining multiple weapons and tactics to fight this modern-day plague. According to The Journal of the Royal Society Interface, a modern offshoot of the one of the earliest medieval gatherings (mid-1600s) of natural philosophers, scientists and scientific craftsmen (instrument makers) into an official organization, those Balkan peasants knew a thing or two about fighting pestilence with “primitive” botanical remedies. Ultimately, bed bug-impaling bean hair “swords” or fabricated replicas will be combined in IPM strategies with other tactics, including ancient Ayurvedic Asian herbal remedies like neem tree oils (see previous blog).

You are not alone in being plagued by bed bugs: According to the journal Medical and Veterinary Entomology (Davies et al., 2012) there are “over 4 millennia of recorded narratives dating back to medieval European texts, classical Greek writings and the Jewish Talmud” and “archaeologists excavating a 3550-year-old workmen’s village at el-Amarna in Egypt found fossilized bed bug remains.” Plus bed bug “Females lay one or two eggs every day, and each female may lay 200–500 eggs in her lifetime, which may be 6 months or longer.” Modern heated buildings with lots of cracks, crevices and hiding places are even more comfortable for bed bugs than the ancient unheated buildings and caves of our ancestors.

The search for botanical remedies is perhaps equally ancient. Sir Francis Avery Jones, writing in the Journal Of The Royal Society Of Medicine (v. 89, Dec. 1996): “In the Stone Age the hunter-gatherers have learnt by hard experience…Over the eons they could have recognized plants which dulled pain, induced sleep, healed wounds, or poisoned animals or their enemies like wolfsbane…In Iraq there is a well-preserved grave of Neanderthal man, dated to some 60,000 years ago, with grains of flower pollen thickly scattered around the bones. The pollen came from eight different species still grown in Iraq today, some having recognized medicinal uses…Very early documents from China, Egypt, Sumaria and India describe the uses of anise, mustard, caraway, mint, saffron, thyme, cardamom, turmeric, cloves and pepper. The herbals reached their peak in the first century AD when the Greek physician Dioscorides assembled his vast De Materia Medica, recording the name, description, habit and medical use of some 600 plants.”

Bean leaves in comparison are a relatively modern bed bug botanical, a variant on the Tudor England practice of covering floors with pest-repellent (e.g. versus fleas, flies, plague, gaol fever/typhus) strewing herbs for their uplifting aromatic properties (e.g. rosemary, woodruff, various mints, box, lavender, santolina, hyssop, balm, cleavers, costmary, marjoram, meadowsweet, tansy). Queen Elizabeth’s use of meadowsweet leaves and flowers was described in The Herbal or Generall Historie of Plantes (1597) by John Gerard: “leaves and floures of meadowsweet farre excell all other strewing herbs for to deck up houses, for the smell makes the heart merrie and joyful and delights the senses.”

The Balkan remedy of bed bugs becoming entangled in hooked bean leaf hairs was written about by someone named Bogdandy in 1927 in the journal Naturwissenschaften and then again in 1943 by the USDA’s Henry Richardson in the Journal of Economic Entomology. According to a 2013 issue of The Journal of the Royal Society Interface, whose authors included Catherine Loudon of the University of California Irvine, who talked about the subject at the Entomological Society of America (ESA): “Historical reports describe the trapping of bed bugs in Balkan countries by leaves from bean plants strewn on the floor next to beds. During the night, bed bugs walking on the floor would accumulate on these bean leaves, which were collected and burned the following morning to exterminate the bed bugs.”

Fire, burning bean leaves that have “hooked” or “trapped” bed bugs, might be considered an extreme and specialized form of pest control heat treatment to be practiced with extreme caution. But compared to combating blood-sucking (vampirism) and werewolfism (Lycanthropy) in Hollywood B-movies, who’s to say. YouTube has videos showing bed bugs getting snagged by bean leaf hairs, and a simulation indicating that real bean leaves are still better than synthetic fabrics fabricated to mimick bean leaves. Kidney bean varieties are best for impaling passing bed bugs, and easy to use around a bed. But some lima bean varieties and small passion flower leaves also work, said Loudon. Interestingly, like computer chips, bean hairs that snag bed bugs best are toughened with silicon, unlike synthetic fabric hairs so far fabricated from substances like dental molding.

But given enough time, I would expect researchers in some dark Transylvanian lab in the Vampire District or in some light-splashed lab with surfboards along Frankenstein Row on the southern California coast to focus their scanning electron microscopes under high and low vacuums and eventually patent and reveal to the world nano-fabric silica hairs of a monstrous nature (to bed bugs) that can protectively surround sleepers and trap bed bugs before they bite. Or perhaps the genetic engineers will get there first with a carnivorous plant (the Venus Bed Bug Trap) for biocontrol. But if you’re keeping score, for most of human history, with some periods of remission, Team Bed Bug is still on top. In the meantime, pleasant dreams; and don’t let the bed bugs bite.


Follow

Get every new post delivered to your Inbox.

Join 47 other followers