Termite Power!

February 25, 2015

TERMITE BIOMASS ENERGY conversion offers a potential 95% to 99% efficiency in converting woody plants into usable energy forms comparable to ethanol fuels and petroleum products. “Termites are regarded as harmful because of the ability to decompose cellulosic materials such as houses made of wood,” said University of the Ryukyus (Okinawa, Japan) researchers Toru Matsui, Gaku Tokuda and Naoya Shinzato in the journal Recent Patents on Biotechnology. However, “Termites and/or their symbionts (e.g. gut protozoa & bacteria) are potentially good resource of functional genes for industrial applications…for biomass utilization, environmental remediation, and fine-chemicals production.”

Several termite genes have already been patented for biofuel (cellulase) and fighting infections (antimicrobial peptides). Combinations of cellulase enzymes and anaerobic symbionts have also been harnessed to produce hydrogen fuel (H2 gas) from waste plastics. “Lignin treatment by anaerobic bacteria from the gut of” several termite species has also been patented; thus pointing towards a greener pathway in place of today’s less environmentally-friendly caustic chemical processes. Termite energy production mechanisms might also be released as Open Source scientific information, instead of patented, as was once common in the scientific world. Indeed, the real practical innovations for sustainable world energy production may be in turning the raw material of biological science basic research into economical applied chemical engineering and bio-engineering solutions. In other words, a new energy production landscape dotted with bio-refineries approaching the 95% to 99% energy conversion efficiency of termite guts digesting woody plant and fiber materials is an objective worth working towards.

Being an ancient insect order, termites have been tapping into Earth’s abundant woody plant resources for perhaps 400 million years; well before dinosaurs and then humans roamed and pillaged the planet. “Cellulose is the most abundant biomass on the earth,” write the Ryukyus researchers. “Termites thrive on plant biomass, in which the major constituents are cellulose, hemicellulose (i.e. non-cellulosic carbohydrates), and lignin…In addition, it can be hydrolyzed to give a sugar pool which can be subsequently fermented to form ethanol, etc. However, the crystalline nature of cellulose had made it difficult to economically convert into useful chemical feedstocks…Other than cellulosic materials decomposition, there could be symbionts degrading lignin-derived compounds, a significant part of the wood constituents.”

At the hops-soaked Entomological Society of America (ESA) annual meeting in Portland, Oregon, the parallels between microbrewing (hops & microbes), baking (yeasts; Voodoo donuts) and termite guts as fermentation vats (bio-refineries) producing energy fuels was bubbling just below the surface. Several research labs, including Michael Scharf’s Purdue University lab, are evaluating the genes and metabolic processes innate to termites as well as the contributions of protozoa, bacteria and other microbes living as symbionts in termite guts and helping digest plant lignins and cellulose into usable energy compounds. Figuring out how termites and their gut microbes are such efficient converters of plant matter into energy is a huge undertaking, even with the latest DNA and genetic tools.

Brittany Peterson, an ESA termite biofuel presenter working in Scharf’s lab writes on her web page about “the co-evolution of termites and their over 4,000 symbiotic microorganisms.” The implication being that the termite hindgut is a bio-refinery where termites and their microbial symbionts constitute the equivalent of a vast unknown ecosystem whose parameters are just now being delimited. Peterson and the Scharf lab view termite guts as a model system for studying synergy and biomass processing of tough toxins like lignin. In other words, as the basis and inspiration for designing green bio-refineries for alternative energy and feedstock production processes more energy efficient than turning food crops like corn into ethanol fuel.

Of course, this means figuring out exactly how termites and their several thousand hindgut microbes extract simple sugars from wood’s complex lignin-cellulose polymer structure. This termite/microbe “digestion” (or depolymerization) has an amazing 95%-99% efficiency that industrial biomass processing or biofuel production cannot match even using very toxic caustic chemistries. Most research on termite gut microbes has focused on protozoa, but Peterson envisions adding bacteria and termite-produced enzymes to create a synergistic bio-refinery mixture. In other words, replacing current caustic and energy inefficient biomass conversion chemistries with greener, more energy efficient biological technologies composed of termite-derived enzymes, bacteria and protozoa to depolymerize biomass and produce usable sugars/energy.

The synergy of termite (host) and gut microbes likely makes possible the observed over 95% lignin-cellulose biomass processing efficiency; 82% of the genes for lignin-cellulose processing, including high expression of cellulase enzymes, come from or are innate to the termite itself rather than the symbiotic gut microbes, Peterson told the ESA annual meeting. Though the termite-microbe synergism boosts the the energy efficiency to quite high levels approaching 100%. At least for woody materials.

Interestingly, though, when termites eat paper, most of the biomass processing genes come from the gut microbes. Thus, a quite complex digestive ecosystem that seems to vary greatly with the food (feedstock) input. The gut microbes also help termites detoxify harmful materials and provide antioxidant protection. Scientific bioassays using various combinations of antibiotic drug treatments and anti-protozoa diets are enabling the Scharf lab to construct a microbial “library” for continuing research, Peterson told the ESA. Recent experiments with bacteria isolated from the subterranean termite Reticulitermes flavipes, indicate that the bacteria either alone or via interaction with protozoa boost glucose (sugar; an energy feedstock) release from lignin-cellulose (plant) biomass.

In the future, it is conceivable that bio-refineries using termite enzymes, bacterial enzymes and protozoa will make today’s ethanol and biomass to energy conversion processes look like toxic, inefficient relics of a primitive industrial energy production past. But it will likely be many more years before bio-engineers and chemical engineers are ready to begin the commercial harvest of termite energy to power our vehicles, the Internet, etc.

What’s Eating Your House May Be Good Medicine

January 2, 2015

[Note to Search Engines: This is Not Another Termite Poop Story.]
Antibiotic-Resistant Bacteria Beaten by Termite Innate Immune System (the science part)

Antiseptic procedures and germ theory, stuff now routine like doctors and nurses washing their hands to avoid contaminating patients, entered modern medicine via 19th-century applied entomology aimed at solving a mysterious silkworm population decline baffling Italy’s Agostino Bassi and France’s Louis Pasteur (See blog, The Mysteries of Colony Collapse). Today, Pasteur might be looking over the shoulder of Yuan Zeng in Xing Ping Hu’s Urban Entomology Lab at Auburn University, wondering how termites make themselves more robust and immune to disease. After working with silkworms and formulating modern germ theory, Pasteur realized that “the exclusive emphasis on the germ theory of contagious disease” was a very incomplete view of reality in need of modification; a radical notion that would be opposed by many in modern medicine even today, as germ theory has attained the status of orthodoxy and relegated the alternatives to the fringes.

Pasteur told colleagues that if he had the chance to go back to silkworm entomology again he would focus on nutrition, the environment and physiology (e.g. immunity) to increase robustness, vigor and disease resistance. Stuff that would be cutting edge in the 21st century. Stuff like termite entomologist Yuan Zeng’s study of how termite “innate immune systems” overcome MultiDrug Resistant (MDR) bacteria infecting over 2 million people annually in the USA. MDR bacteria in the USA annually kill over 23,000 “because they are untreatable with today’s drugs,” Zeng told the Entomological Society of America (ESA) annual meeting. MDR bacteria are also becoming “a significant global health threat.” An excellent YouTube video of Yuan Zeng describing her Auburn University research on termites defeating MDR bacteria is now available.

Zeng’s previous research with powdered extracts of Eastern subterranean termites (Reticulitermes flavipes) against bacteria causing human gastric distress lends credibility to traditional folk medicines containing insects. “Our previous research on disease resistance in R. flavipes workers showed that the crude extract of naive termites constitutively displayed a broad-spectrum antibacterial activity including agents responsible for human gastric infections,” Zeng told the ESA annual meeting. The logic behind using termites as medicines or drugs is that subterranean termites forage and nest in soil loaded with pathogenic microbes, making them a “source for novel antimicrobial discovery because they have evolved effective innate immune systems in confronting various harmful microorganisms.”

If a termite species is both pest and medical cure, then might an alternative to chemical fumigation be to harvest (e.g. trap or vacuum) the termites and sell them as a medicinal crop? That is a question that rarely, if ever, is asked. “Science has already proven the existence of immunological, analgesic, antibacterial, diuretic, anesthetic, and antirheumatic properties in the bodies of insects,” wrote Brazilian researcher Eraldo Medeiros Costa-Neto in an article titled ENTOMOTHERAPY OR THE MEDICINAL USE OF INSECTS. “Since early times, insects and the substances extracted from them have been used as therapeutic resources in the medical systems of many cultures. Commonly considered to be disgusting and filthy animals, many insect species have been used live, cooked, ground, in infusions, in plasters, in salves, and as ointments, both in curative and preventive medicines.”

Florida is the place where all the termites of the world seem to be coming to live. The Palm Beach, Florida, TV news recently warned of a Caribbean invasion of conehead or tree termites, known scientifically as Nasutitermes corniger. Conehead termites avoid competing with subterranean termites by building “beach-ball size” nests above ground and “brown tubes up the outside walls of houses,” and according to the TV make wood look like “shredded wheat.” Even “aggressive spraying” dating back to 2001 failed in its goal of eradication, and 100 million conehead termites nesting in 120 colonies amongst 42 properties were sprayed in 2012. Conehead termites, which are “distributed from southern Mexico to northern Argentina and the West Indies,” are “commonly used in traditional medicine in Northeast Brazil,” say scientists in Brazil. No doubt the coneheads will turn up again and again in Florida until they are finally accepted as residents. That is the nature of invasive insects.

Perhaps instead of chemical eradication programs, these termites should be harvested and exported to Brazil and elsewhere for medical use. “With the increase in microbial resistance to antibiotics, the use of natural products represent an interesting alternative for treatment,” wrote Henrique Coutinho and his Brazilian colleagues in an article titled “Termite usage associated with antibiotic therapy.” Crushed and powdered conehead termites mixed with a conventional antibiotic drug (which was failing, due to bacterial resistance) produced “a new weapon against the bacterial resistance to antibiotics” via a termite-drug synergy. In other words, mixing powered conehead termites with the drug made for a more powerful antibiotic medicine than using the antibiotic drug alone. At least the coneheads are good for something.

Yuan Zeng told the ESA and YouTube that she fed subterranean termites “sublethal concentrations of MultiDrug Resistant (MDR) pathogens, Methicillin-resistant Staphylococcus aureus (MRSA) or Pseudomonas aeruginosa (PAOl),” which induced “an alternation of protective proteins” produced by the termite’s innate immune system. “The composition changes of proteins following the feeding of MDRs significantly inhibited the growth of P. aeruginosa and MRSA,” said Zeng. “The results of this research could be a significant breakthrough for developing novel effective drugs” to fight human disease pathogens resistant to multiple antibiotic drugs. Worldwide, millions of people stand to benefit.

Known termite immune proteins include termicin, spinigerin, lysozome, tGNBPs, and “two unidentified proteins from several termite species with potent antibacterial and antifungal activities.” However, Zeng’s termite antimicrobial compounds are different; though there is still much scientific work to be done.

In the journal “Recent Patents on Biotechnology,” Japanese researchers Toru Matsui, Gaku Tokuda and Naoya Shinzato from University of the Ryukyus in Okinawa discussed patenting termite genes for alternative energy and drug production. “Although termites are regarded as harmful because of the ability to decompose cellulosic materials such as houses made of wood,” said Matsui et al. “Termites and/or their symbionts are potentially good resource of functional genes for industrial applications…for biomass utilization, environmental remediation, and fine-chemicals production.” Several termite genes have already been patented for biofuel (cellulase) and fighting infections (antimicrobial peptides).

A fungus-growing termite, Pseudacanthotermes spiniger, is notable for producing termicin, an antifugal peptide, and spinigerin, an anti-bacterial and antifungal peptide. “These peptides and the corresponding cDNAs have been patented as useful for protection of plants from pathogenic fungi or medical purposes,” said Matsui et al. “Similarly, some chemical antibiotic compounds isolated from termites have also been patented for the use of treating a microbial infection or disease.”

“Although entomotherapy is an ancient practice, it is still relatively unknown in the academic world,” wrote Costa-Neto. “In fact, as Holt already stressed in 1885, the advance of medical science and the suppression of folk knowledge swept away belief in the medicinal qualities of insects.”

Insect species outnumber plant species 16-fold, according to an article in The Indian Journal of Traditional Knowledge: “Yet very few researchers have concentrated on the medically useful properties of insects. Most research with insects revolves around getting rid of them.”

Medical Botany refers to plants used for medical or health purposes. But there is no entomological equivalent. Medical Entomology addresses arthropods as medical or pest problems; and by analogy is like Weed Science to Botany. Insects as medicinal cures or health enhancers are outliers, orphan science, folk healing curiosities; perhaps supermarket tabloid fodder alongside celebrity scandals and UFO abductions.

In South India winged subterranean termites (Odontotermes formosanus) are traditionally roasted in earthen pots and consumed for three evenings to treat asthma. But their anti-bacterial qualities have not been explored, “mainly because of the difficulty in harvesting large numbers.” Memo to South India: An abundance of potentially medicinal subterranean termites are ready for harvesting and roasting for export in south Florida, Hawaii, New Orleans, Auburn, Mississippi, etc. Perhaps in some distant future a doctor will say, “Take two powdered termites and some Vitamin C, and call me in the morning.”

Fly-Sucking Cowvac —-> Organic Milk

December 5, 2014

Rest assured, a CowVac is not a veterinary vaccine of some sort that magically provides insect control or renders cows autistic. Rather, it is about producing organic milk and organic milk products like butter and yogurt. A CowVac is a suction or vacuum device incorporated into a larger trapping apparatus that removes blood-sucking flies that can be an even worse livestock plague than mosquitoes or ticks. Besides being bad economics (too expensive), pesticides repeatedly applied at ever higher doses quickly select for pesticide-resistant biting flies; i.e the flies become immune. Which is not to say that insects will not develop some ingenious solution, like holding on tighter, to avoid being sucked up by strong suction. But at least development of stronger suction devices and better ways to knock insects off animals would not add pesticide residues to the environment, food chain and human diets. A human equivalent, awaiting invention, would be an enclosure of some sort designed to knockoff and suck up (vacuum off) bed bugs before they bite (see previous blog, on bed bug desperation time innovative research).

“Seven years in the making: The Cow-Vac removes horn flies from dairy cattle” was the title of a special display at a members symposium “Honoring the Career and Contributions of Veterinary Entomologist Donald A. Rutz” at the Entomological Society of America (ESA) annual meeting in the beer brewing capital of the world, Portland, Oregon. On its web site, the Center for Environmental Farming Systems (CEFS) at North Carolina State University (NCSU) in Raleigh reports: “This innovative solution is now part of routine cattle management at the CEFS Dairy Unit and has allowed the herd to be insecticide-free for 5 years.” In other words, this “alternative fly management system” designed by Steve Denning and D. Wes Watson demonstrated “the feasibility of producing organic milk.”

“The trap removed between 1.3 and 2.5 million flies annually from the research station cattle,” Denning and Watson reported to the ESA in Portland. “Prior to the installation of the trap in 2007, the cattle routinely had horn fly populations above 1000 flies per animal and would require insecticide applications for horn fly control. With a vacuum trap in place, dairy cattle at CEFS have not required or have been treated with an insecticide.” With each of the thousand horn flies sucking blood 10-12 times per day, the blood loss and associated problems were huge (USA estimated losses are over $2.26 billion per year), and organic animal agriculture was considered questionable.

“The first walk-through pasture fly trap consisted of a covered structure designed to brush flies from the animals as they passed through, with the fleeing flies captured in the screened hollow walls,” reported Denning and Watson at the ESA meeting in Portland. “Modifications to the Bruce trap have been introduced over the years. These modified traps employ the same basic mode of action; curtains to dislodge flies and light, either natural or fluorescent, to attract flies to a cage, or bug zapper. In addition to curtains, the CowVac uses air pressure to dislodge flies, and vacuum to capture flies, trapping them in a chamber until death.” So far, the Animal Rights movement has yet to recognize a right to food (animal blood, in this case) for biting flies (also animals); and the flies die a natural death from lack of animal blood as a food source. Cruelty to animals (flies), perhaps; and fodder for an ethics debate. But if you want organic milk, butter, meat, yogurt, etc…

There are YouTube videos on the vacuum trap, and the Northeast Organic Dairy Producers Alliance has an in-depth article on the CowVac and its development by fly biocontrol specialist Tom Spalding of Spalding Labs: “…the Horn Fly is very tough to control. It’s resistant to most every chemical control. It only reproduces in cow pastures, which means there is always productive breeding material available as no one cleans up pasture pats…For the past 16 years, North Carolina State University entomologists, Dr. Wes Watson and Steve Denning, have been researching IPM practices for pest fly control for commercial livestock and poultry operations…They have seen it all, testing at least 100’s of products…repellent on most and only a few animals with pesticide, to using electric traps, light traps, walk thru traps, feed thru products, ear tags, oilers, you name it…in 2006 as Steve was watching flies get scrapped off cows going thru a walk in trap, and then following the cow out the exit and getting right back on, he had an AH HA moment of “let’s see if we could vacuum up those little buggers”…Organic Valley heard about this unit and they sponsored a test, placing 6 units on North Carolina dairies in 2012…we made a trip to Raleigh, NC to see it. I knew from our efforts using Fly Predators to control Horn Flies that this little insect was a big deal. It took a lot of work as you had to put the Fly Predators in the pastures where the cows has just been and that only worked for those doing intensive grazing. Harrowing or running a screen drag over the pastures made a big difference too, but all those things took more time than most dairymen had. If this vac thing worked it would solve a horrible problem every grazier has…We agreed to license the technology from NC State and so began the redesign for production and optimization. This is the second unlikely alignment of the stars. I run a beneficial insect company, but I’m a mechanical engineer (ME) by schooling and in the 30 years prior had started a number of high tech companies…we refined the airflow on real animals. While the simulated cow got us very close to optimized performance, we actually were blowing too much air…”

Kidney Bean Leaves Beat Bed Bugs

October 21, 2014

KIDNEY BEAN LEAF hairs, an ancient Balkan folk remedy to ameliorate bed bugs biting like vampires in the nighttime and wee morning hours, are in essence medieval warfare pikes barbarically impaling bed bugs resistant to 20th and 21st century synthetic pesticides. The resurrection of kidney bean leaves from Balkan folklore is a measure of human desperation, and an example of an IPM (Integrated Pest Management) strategy combining multiple weapons and tactics to fight this modern-day plague. According to The Journal of the Royal Society Interface, a modern offshoot of the one of the earliest medieval gatherings (mid-1600s) of natural philosophers, scientists and scientific craftsmen (instrument makers) into an official organization, those Balkan peasants knew a thing or two about fighting pestilence with “primitive” botanical remedies. Ultimately, bed bug-impaling bean hair “swords” or fabricated replicas will be combined in IPM strategies with other tactics, including ancient Ayurvedic Asian herbal remedies like neem tree oils (see previous blog).

You are not alone in being plagued by bed bugs: According to the journal Medical and Veterinary Entomology (Davies et al., 2012) there are “over 4 millennia of recorded narratives dating back to medieval European texts, classical Greek writings and the Jewish Talmud” and “archaeologists excavating a 3550-year-old workmen’s village at el-Amarna in Egypt found fossilized bed bug remains.” Plus bed bug “Females lay one or two eggs every day, and each female may lay 200–500 eggs in her lifetime, which may be 6 months or longer.” Modern heated buildings with lots of cracks, crevices and hiding places are even more comfortable for bed bugs than the ancient unheated buildings and caves of our ancestors.

The search for botanical remedies is perhaps equally ancient. Sir Francis Avery Jones, writing in the Journal Of The Royal Society Of Medicine (v. 89, Dec. 1996): “In the Stone Age the hunter-gatherers have learnt by hard experience…Over the eons they could have recognized plants which dulled pain, induced sleep, healed wounds, or poisoned animals or their enemies like wolfsbane…In Iraq there is a well-preserved grave of Neanderthal man, dated to some 60,000 years ago, with grains of flower pollen thickly scattered around the bones. The pollen came from eight different species still grown in Iraq today, some having recognized medicinal uses…Very early documents from China, Egypt, Sumaria and India describe the uses of anise, mustard, caraway, mint, saffron, thyme, cardamom, turmeric, cloves and pepper. The herbals reached their peak in the first century AD when the Greek physician Dioscorides assembled his vast De Materia Medica, recording the name, description, habit and medical use of some 600 plants.”

Bean leaves in comparison are a relatively modern bed bug botanical, a variant on the Tudor England practice of covering floors with pest-repellent (e.g. versus fleas, flies, plague, gaol fever/typhus) strewing herbs for their uplifting aromatic properties (e.g. rosemary, woodruff, various mints, box, lavender, santolina, hyssop, balm, cleavers, costmary, marjoram, meadowsweet, tansy). Queen Elizabeth’s use of meadowsweet leaves and flowers was described in The Herbal or Generall Historie of Plantes (1597) by John Gerard: “leaves and floures of meadowsweet farre excell all other strewing herbs for to deck up houses, for the smell makes the heart merrie and joyful and delights the senses.”

The Balkan remedy of bed bugs becoming entangled in hooked bean leaf hairs was written about by someone named Bogdandy in 1927 in the journal Naturwissenschaften and then again in 1943 by the USDA’s Henry Richardson in the Journal of Economic Entomology. According to a 2013 issue of The Journal of the Royal Society Interface, whose authors included Catherine Loudon of the University of California Irvine, who talked about the subject at the Entomological Society of America (ESA): “Historical reports describe the trapping of bed bugs in Balkan countries by leaves from bean plants strewn on the floor next to beds. During the night, bed bugs walking on the floor would accumulate on these bean leaves, which were collected and burned the following morning to exterminate the bed bugs.”

Fire, burning bean leaves that have “hooked” or “trapped” bed bugs, might be considered an extreme and specialized form of pest control heat treatment to be practiced with extreme caution. But compared to combating blood-sucking (vampirism) and werewolfism (Lycanthropy) in Hollywood B-movies, who’s to say. YouTube has videos showing bed bugs getting snagged by bean leaf hairs, and a simulation indicating that real bean leaves are still better than synthetic fabrics fabricated to mimick bean leaves. Kidney bean varieties are best for impaling passing bed bugs, and easy to use around a bed. But some lima bean varieties and small passion flower leaves also work, said Loudon. Interestingly, like computer chips, bean hairs that snag bed bugs best are toughened with silicon, unlike synthetic fabric hairs so far fabricated from substances like dental molding.

But given enough time, I would expect researchers in some dark Transylvanian lab in the Vampire District or in some light-splashed lab with surfboards along Frankenstein Row on the southern California coast to focus their scanning electron microscopes under high and low vacuums and eventually patent and reveal to the world nano-fabric silica hairs of a monstrous nature (to bed bugs) that can protectively surround sleepers and trap bed bugs before they bite. Or perhaps the genetic engineers will get there first with a carnivorous plant (the Venus Bed Bug Trap) for biocontrol. But if you’re keeping score, for most of human history, with some periods of remission, Team Bed Bug is still on top. In the meantime, pleasant dreams; and don’t let the bed bugs bite.

Silkworms for Medicine & Good Health

August 17, 2014

A SILKWORM A DAY may not keep the doctor away, but for some in South Korea silkworm proteins are the pathway towards reduced Alzheimer’s disease, less diabetes, less fatigue, stronger muscles and perhaps eventually gold and silver Olympic swimming medals; much the way ghost moth caterpillars naturally infected with cordyceps fungi are used by Chinese athletes and herbal medicine practitioners. Silkworm production dates back several thousand years, and likely came to the Korean Peninsula via China, where over a thousand years ago bolts of silk (30 ft/bolt; one day’s production by a skilled weaver) were equal to silver and gold as hard currencies. A director of the International Dunhuang Project (IDP) investigating ancient Silk Road links between Asia, the Middle East and Europe, Susan Whitfield, wrote in her book, Life Along the Silk Road, that distrust of promissory notes led to demands that horse buyers pay with bolts of silk. According to A Guide to Korean Cultural Heritage (Korean Information Service, 2001): “In Korea, ma (hemp) and ppong (mulberry) trees were cultivated; myeonpo (cotton cloth) and mapo (hemp cloth), as well as hapsa (twisted thread)” and jasu (embroidery) on silk date back well over a thousand years to a time when China imported fine silks from Korea.

Medically, biodegradable silkworm fibers are highly valued for their biocompatiblity (i.e. minimal immune response) when sewn with human tissues as sutures or stitches. Various formulations of silk are also useful in surgical or bioengineering operations such as growing new bones, nerves or blood vessels. “As has been documented over decades, silk protein exhibits high mechanical strength and flexibility, permeability to water and oxygen and can be made into nets, sponges or membranes, being easily handled, manipulated and sterilized…especially in tissue engineering for the generation of artificial bones or ligaments,” write researchers at China’s Nantong University investigating “silk-based or silk-coated materials for peripheral nerve repair.” The idea being to use silk “as scaffold material to prepare the tissue engineered nerve grafts for promoting peripheral nerve regeneration.” Silk scaffolds or blood vessels can also be designed to release various drugs (e.g. anti-coagulants, antimicrobials, anti-inflammatory agents).

Silks can also be naturally colored or made luminescent (fluorescent) by incorporating coloring agents into silkworm mulberry leaf diets: Hence, “novel silk-based material (that) not only maintains the superior properties of natural silk but can also be imbued with additional properties to perform sensing and monitoring functions” such as measuring changes in wound or tissue pH (i.e. acidity, alkalinity), says Dr. Han Mingyong, Senior Scientist at Singapore’s Institute of Materials Research and Engineering (IMRE). “The novel silk material can be used as fabrics in apparel, and furnishing. In biomaterials, it can add function to sutures, wound dressings, and tissue engineering scaffolds.” All this at “minimal cost and with little modification” of centuries-old standard silkworm production practices, but with real environmental benefits because: “The lengthy dyeing process and post-processing steps in conventional silk making are completely removed.”

Silkworm silk production involves getting the adult female silkworm moths, which are flightless and can no longer live in the wild after centuries of domestication, to lay eggs that hatch into caterpillars living on mulberry (some species prefer oak) leaves. When the silkworms pupate, they spin a silken cocoon which is dropped in boiling water so that the outer silk threads unravel and can be spun into the fibers of commerce. “According to legend, 5,000 years ago Chinese Empress Xi Ling-Shi discovered silk when a silkworm cocoon fell into her hot cup of tea,” says Ecoworldly.com. “She unraveled the strange cocoon and, wrapping the thread around her finger, soon realized what an exquisite cloth it would make…If this is true, the silkworm that haplessly fell into the empress’ cup on that fateful day met a fate very similar to that of modern day silkworms.” Being insects, which are animals, they are not vegetarian fare; those concerned with animal cruelty and animal rights activists need to consider that these silkworms are in essence a human-created species (almost a symbiosis) and unable to survive in the wild.

Beondegi (번데기), the boiled or steamed silkworm chrysalis, are served as a snack food on the streets in Korea, and University of Florida, Gainesville, entomology professor Nan-Yao Su, who donated termite trap (Sentricon) royalties to establish the Entomological Society of America’s (ESA) “Nan-Yao Su Award for Innovation and Creativity in Entomology,” told me of eating silkworm snacks as a student in Japan. Dr. Su was not that impressed, an opinion shared by a South Korean and her Brazilian guest’s “gag me with a spoon response” on Izumislife vlog on YouTube; though an older Korean lady in the background, presumably more well-versed in beondegi’s medicinal properties was gulping down the boiled insects sold by the street vendor like there was no tomorrow (increased longevity may indeed be a beondegi benefit). Evidently, silkworms or beondegi (번데기) are a cultivated taste. But Dr. Su, with Professor Marjorie Hoy as my witness, professed not to be a Trader Joe’s fan either. So, I kept to my plan to attend the Tuesday night ESA Annual Meeting Korean Young Entomologists networking meeting, which led off with drones for delivering biocontrol insects and concluded with a trio of researchers fresh off the plane from South Korea to talk (in Korean; with slides in English) about their impressive latest research on the medical benefits of eating silkworm proteins. I was impressed with the research, and spent the last few months reading the English language scientific literature on silkworms for medicine and good health. The result is an overly long blog, like those 3-hour articles I used to read in the New Yorker instead of going to sleep at night; but since the blog readers mainly come here via search engines looking for information on a topic, I figure overly long is okay.

The Korean Young Entomologists (KYE) Member Symposium led off with Yong-Lak Park’s “Shooting insects from the sky: Aerial delivery of natural enemies using aerospace engineering,” and finally sometime between 9 and 10 at night (some time changes from ESA Internet site) came the silkworm presentations by Eunyoung Ahn, Hyobin Seo, and Yiseol Kim from South Korea’s Kyungpook National University. Researchers Sungpil Ryu, Taedong Kwon, Yunghi Yeo, and Mihee Cho contributed to the work, but were not present. The researchers made the point that silkworm pupae had a higher protein and amino acid content than soybeans, and were high in desirable unsaturated fatty acids that lowered blood lipid levels (anti-obesity). In rat feeding trials, powdered, freeze-dried silkworm proteins increased skeletal muscle volume when swimming was the exercise. This has obvious appeal to body builders and others involved in exercise and training seeking to increase muscle mass, strength and energy. Specific amino acids (glutamine, branched-chain amino acids, cysteine) were singled out as most important to the immune systems of athletes. A combination of silkworm proteins and exercise had multiple beneficial effects: increased antioxidants; decreased MDA and inflammatory cytokines. Swimming plus silkworm pupae also improved fat metabolism, leading to lower blood lipid levels; so a combination of silkworm protein and exercise was deemed good for promoting weight loss or combating the worldwide epidemic of obesity caused by “excess nutrition” (e.g. the trend towards super-sized portions). Other research indicated benefits involving blood cholesterol, reduced fat synthesis and accumulation, and preventing liver cirrhosis in high-fat diets. Thus, silkworm pupae are potential weight-loss foods or food supplements.

The 25-volume Dong-eui-bo-gam (동의보감) (Mirror of Eastern Medicine), published in 1613 by the legendary Korean royal physician Heo Jun (허준), called silkworm pupa a natural healthy food and nontoxic remedy for diabetes, ischemic disease and “thinning.” Modern medical research indicates Heo Jun knew what he was talking about, and was actually a couple of centuries ahead of modern Western medicine. Our knowledge of the potential medical benefits of silkworms is rapidly expanding, particularly in South Korea, China and Japan; and to a lesser degree in India, where the silkworms are often a different species feeding on oak tree leaves. We have only scratched the surface of the medical benefits of silkworms in this blog.

Herbicide-Resistant Grains Reduce Global CO2

June 25, 2014

THE WAR BANNERS of the North American Global Climate Change Brigade are flying high and flapping in the wind as the West’s Crusade Against CO2 (carbon dioxide) ratchets up against the alleged Lex Luther of fossil fuels, the super-villain coal favored by the up-and-coming industrial economies of India and China. But the USA has an ace in the hole, an agricultural crop super-hero warrior equivalent of the comic book-heroes Batman & Robin or the US Navy Seals ready to colonize world grain farming areas and help save the day by reducing global CO2 emissions. Though its longer term sustainability is open to question and the development of herbicide resistant weeds are almost an assured part of the package, an interesting case can be made for using grain crops resistant to herbicides (mainly glyphosate at the moment) in no-till and minimum-tillage farming systems to reduce global CO2 emissions.

“Weeds are the most significant of the economic and environmental pests, and they are the target of much of the pesticides applied throughout the world,” wrote Rachel E. Cruttwell McFadyen in an Annual Review of Entomology article titled Biological Control of Weeds. “Herbicides comprise 47% of the world agrochemical sales, and insecticides 29%. Weeding, usually by hand, accounts for up to 60% of total pre-harvest labor input in the developing world.” All this herbicide use is having predictable ecological results. According to to the International Survey of Herbicide Resistant Weeds: “There are currently 432 unique cases (species x site of action) of herbicide resistant weeds globally, with 235 species (138 dicots and 97 monocots). Weeds have evolved resistance to 22 of the 25 known herbicide sites of action and to 155 different herbicides. Herbicide resistant weeds have been reported in 82 crops in 65 countries.”

However, when the herbicide use is coupled with grain crops that are herbicide-resistant in no-tillage or minimum-tillage farming systems, the reduction in CO2 emissions from the farming systems is quite dramatic. In a 2008 article titled “Glyphosate: a once-in-a-century herbicide” in the journal Pest Management Science, S.O. Duke and S.B. Powell wrote: “Glyphosate-Resistant crop use worldwide in 2005 resulted in a reduction of carbon dioxide emissions and potential additional soil carbon sequestration equivalent to the removal of about 4 million family cars from the road in terms of effects on global carbon balance.” This positive view of Roundup Ready® crops, which are genetically modified organisms (GMOs) resistant to the herbicide glyphosate, was echoed in 2012 in the Weed Science Society of America’s journal, Weed Science: “Adoption of conservation tillage in the United States since 1982 is credited with reducing average soil erosion by 30%, raising the amount of soil carbon, and lowering CO2 emissions.”

In 2010, the combined biotech crop-related carbon dioxide emission savings from reduced fuel use and additional soil carbon sequestration were equal to the removal from the roads of 8.6 million cars, equivalent to 27.7% of all registered cars in the UK (United Kingdom),” wrote Graham Brookes and Peter Barfoot in their 2012 UK report. “Based on savings arising from the rapid adoption of no till/reduced tillage farming systems in North and South America, an extra 4,805 million kg of soil carbon is estimated to have been sequestered in 2010 (equivalent to 17,634 million tonnes of carbon dioxide that has not been released into the global atmosphere).”

If you subscribe to the CO2-centric consensus that temperature change on planet Earth revolves almost exclusively around the evil-demon molecule, CO2, then like night follows day the case for no-tillage farming schemes using herbicide-resistant GMOs (genetically modified organisms) that sequester carbon, reduce soil erosion, minimize fossil fuel use and reduce CO2 emissions in a major way is tough to fight, even if the GMO scheme has some discomforting side-effects to swallow.

On the other hand, the consensus or majority view can sometimes turn out to be dead wrong, be it CO2 or commodity prices (e.g. houses, gold). I remember vividly the early 2000s, being in the 17% minority when an overwhelming 83% of the USA population were “in consensus” with the world “intelligence community” consensus belief in the absolute certainty of another evil demon threatening life on planet Earth, Iraqi Weapons of Mass Destruction. Turned out to be Iraqi Weapons of Mass Deception. But realistically, we cannot demand God-like perfection and 100% correctness from the consensus-making machinery. On a more scientific level, before the USA came into existence as a nation-state, there was a very sincere consensus belief (perhaps 97%) that the Earth was flat and ships sailing from Europe towards North America would be swallowed by dragons or perish in the void. A skeptical Christopher Columbus undeniably demonstrated otherwise. Likewise, Aristotle’s most accepted ancient scientific wisdom was later revised; and a skeptical Albert Einstein punched holes into previous beliefs about the nature of the physical world.

Organic and traditional grain growers do have some good reasons to resist growing herbicide-resistant GMO (genetically modified organisms) grains, despite the reduced CO2 emissions. Indeed, it is theoretically possible to develop organic herbicides (e.g. allelopathic extracts of sorghum, eucalyptus, sesame, sunflower, tobacco and brassica fight weedy wild oats & canary grass in wheat fields) and implement organic no-till and minimum-till systems with cover crops, green manures, mulches, intercropping, crop rotations, etc.

But for the moment, herbicide-resistant GMO grains have been voluntary adopted (no mandates or penalties for non-use) and dominate in the Americas for reasons having little to do with direct concern for CO2 emissions. Reduced CO2 emissions from farming systems incorporating herbicide-resistant GMO crops might be called a pleasant side effect; though logically it could become a global selling point, if not a global mandate (perhaps even enforced by the USA, EU, NATO or United Nations) as part of the “War on CO2.”

In point of fact, the IPCC (International Panel on Climate Change), which sets the European Union (EU) and global agenda on these matters is on record in their official reports, that herbicide-resistant GMOs used in no-tillage and minimum-tillage farming are a valid remedy for reducing CO2 emissions.

Though Brookes and Barfoot caution against taking their numbers too literally, because they are estimates based on assumptions and models (e.g. IPCC data), the contribution to CO2 emissions reduction from herbicide-resistant GMO crops and no-tillage farming is hard to dispute. If the consensus case against CO2 as the climate-change evil demon molecule is fully accepted and considered closed and beyond debate, then the case for herbicide-resistant GMO grains becomes politically correct and GMO-skeptics should logically be housed with CO2-skeptics in the same denial and heretic camp. However, the evil-demon status of CO2 is open to alternative interpretations incorporating some beneficial attributes of carbon atoms and CO2 molecules as essential to life on planet Earth.

Call it carbon skepticism or CO2 denial if you wish, but the famous Italian chemist Primo Levi, a concentration camp survivor (who later committed suicide) and knew firsthand that majority opinion can sometimes be tragically wrong, questioned the mainstream CO2 obsession and wrote: “Carbon dioxide, that is, the aerial form of carbon…this gas which constitutes the raw material of life, the permanent store upon which all that grows draws, and the ultimate destiny of all flesh, is not one of the principal components of air but rather a ridiculous remnant, an ‘impurity,’ thirty times less abundant than argon, which nobody even notices. The air contains 0.03 percent (CO2)…This, on the human scale, is ironic acrobatics, a juggler’s trick, an incomprehensible display of omnipotence-arrogance, since from this ever renewed impurity of the air we come, we animals and we plants…”

Lost in the shrill certitude and climate change bullying is the fact that CO2 is only 1 of about 200 atmospheric gases interacting with each other and other factors such as cloud cover in still not fully understood ways affecting climate and temperature; lack of adequate understanding for computer input is one reason why the computer model predictions are inherently prone to error and inaccuracy. Side effects of reduced atmospheric CO2 may include less plant photosynthesis (e.g. less food crop growth) and less water transpiration by plants (which may affect cloud cover and rainfall in ways that actually increase global warming).

Coal gets more of the blame for CO2 emissions. But, ironically, scrubbing (removing) sulfur dioxide (SO2) from burning coal caused much of the global warming blamed on CO2 by shrinking the Earth’s sulfate layer (which offsets the warming effect of CO2). Though the SO2 from coal burning is a pollutant we would not want back, it illustrates the complexity of the atmosphere, where selectively manipulating one thing leads to other unexpected problems. For example, put back the SO2 “scrubbed” from burning coal, and almost like magic the CO2 warming effects vanish (along with the rationale for global carbon taxes, cap-and-trade, and herbicide-resistant GMO crops to fight CO2). It’s like Dem Bones song on YouTube. Indeed, the cooling of the Earth when SO2 or sulfates are put back into the atmosphere by natural sources like volcanic eruptions is very dramatic. According to the U.S. Geological Survey:

“The most significant climate impacts from volcanic injections into the stratosphere come from the conversion of sulfur dioxide to sulfuric acid, which condenses rapidly in the stratosphere to form fine sulfate aerosols. The aerosols increase the reflection of radiation from the Sun back into space, cooling the Earth’s lower atmosphere or troposphere. Several eruptions during the past century have caused a decline in the average temperature at the Earth’s surface of up to half a degree (Fahrenheit scale) for periods of one to three years. The climactic eruption of Mount Pinatubo on June 15, 1991, was one of the largest eruptions of the twentieth century and injected a 20-million ton (metric scale) sulfur dioxide cloud into the stratosphere at an altitude of more than 20 miles. The Pinatubo cloud was the largest sulfur dioxide cloud ever observed in the stratosphere since the beginning of such observations by satellites in 1978. It caused what is believed to be the largest aerosol disturbance of the stratosphere in the twentieth century, though probably smaller than the disturbances from eruptions of Krakatau in 1883 and Tambora in 1815. Consequently, it was a standout in its climate impact and cooled the Earth’s surface for three years following the eruption, by as much as 1.3 degrees at the height of the impact. Sulfur dioxide from the large 1783-1784 Laki fissure eruption in Iceland caused regional cooling of Europe and North America by similar amounts for similar periods of time.”

Yes, major volcanoes are rarely more than a few per century; but there is also possibility of global cooling from a nuclear winter triggered by nuclear explosions. In 2011, a “rare” combination of a tsunami triggering a nuclear power plant meltdown intimidated the Japanese into shutting down their “clean” (as far as CO2 and greenhouse gas emissions go) nuclear power plants and substituting CO2-emitting fossil fuels; ironically, going against the United Nations Kyoto Protocol treaty negotiated in Kyoto, Japan. The Kyoto Treaty, whose stated “goal is to lower overall emissions from six greenhouse gases – carbon dioxide, methane, nitrous oxide, sulfur hexafluoride, HFCs, and PFCs,” had a few other flaws: “Please recall that China and India are Exempt from Kyoto standards,” writes Mish’s Global Economic Trend Analysis. “The US opted out because China was not a party. Canada signed the treaty but in 2012 Canada Leaves Kyoto Protocol, Lets China Buy Into Oil Sands.”

CO2 concentrations in the atmosphere of planet Earth have actually dropped dramatically over geologic time, and are nowhere near returning to former levels that favored plant life over animal life. University of Cambridge chemist John Emsley notes that natural sources, mainly the metabolism of food sources by plant and animal life, are still responsible for most CO2 production on planet Earth. In his book, Nature’s Building Blocks, Emsley writes: “The Earth’s early atmosphere may have contained a lot of carbon dioxide and methane, but once life evolved that began to change. Today, there is very little of these gases and a lot of oxygen instead, thanks chiefly to the action of plants which convert carbon dioxide and water into carbohydrate and oxygen by photosynthesis. The Earth’s atmosphere contains an ever-increasing concentration of carbon dioxide and carbon monoxide, from fossil fuel burning, and of methane, from paddy fields and cows. Human contributions to these sources are still minor compared with natural sources: most carbon dioxide comes from plants, microbes and animals, while methane is given off by swamps, marshes and termite mounds.”

The Mysteries of Colony Collapse

May 15, 2014

COLONY COLLAPSE DISORDER (CCD) of honey bees is one of the lingering mysteries of early 21st Century science in more ways than one: from its microbial, immune system and genetic components to an amorphous almost Orwellian terminology as imprecise and ambiguous as climate change (a slogan wide enough to encompass warming up, cooling down, and even staying the same temperature while the numbers fluctuate around the mean or average). The ambiguous language says both nothing and everything simultaneously, though underlying CCD is a quest for as yet unknown changes in insect rearing circumstances that will produce non-collapsing honey bee colonies. During the 19th century (1800s), a century marked by worldwide famines in the the old colonial empires and phylloxera-ravaged wine-grape vineyards collapsing in France, a revolution in modern medicine was being birthed in the mysteriously collapsing silkworm colonies. Fortunately for lovers of silk fabrics, fashion and textiles, 19th century silkworm farmers had the services of the real-life scientific Sherlock Holmes of the era, the famous French freelance scientist and sometime entomologist, Louis Pasteur.

Pasteur had a knack for solving applied problems like fermentation (beer, wine, vinegar) and silkworm colony collapse, and then using the results to develop broader theories like germ theory, which taught modern doctors to wash their hands and sterilize their instruments so as to stop spreading the germs that commonly killed their patients. How Pasteur almost single-handedly accomplished so much more than whole scientific institutes seemed able to do in the 20th century was the subject of an illuminating mid-20th century book, Louis Pasteur Free Lance of Science, by French-borne microbiologist Rene Dubos. “Toward the middle of the nineteenth century a mysterious disease began to attack the French silkworm nurseries,” wrote Dubos. “In 1853, silkworm eggs could no longer be produced in France, but had to be imported from Lombardy; then the disease spread to Italy, Spain and Austria. Dealers procuring eggs for the silkworm breeders had to go farther and farther east in an attempt to secure healthy products; but the disease followed them, invading in turn Greece, Turkey, the Caucasus–finally China and even Japan. By 1865, the silkworm industry was near ruin in France, and also, to a lesser degree, in the rest of Western Europe.”

“The first triumphs of microbiology in the control of epidemics came out of the genius and labors of two men, Agostino Bassi and Louis Pasteur, both of whom were untrained in medical or veterinary sciences, and both of whom first approached the problems of pathology by studying the diseases of silkworms,” wrote Dubos, who between World Wars I and II worked at the League of Nations’ Bureau of Agricultural Intelligence and Plant Diseases as an editor of the International Review of the Science and Practice of Agriculture. “A disease known as mal del segno was then causing extensive damage to the silkworm industry in Lombardy. Bassi demonstrated that the disease was infectious and could be transmitted by inoculation, by contact, and by infected food. He traced it to a parasitic fungus, called after him Botrytis bassiana (since renamed Beauveria bassiana, a widely used biocontrol agent)…An exact understanding…allowed Bassi to work out methods to prevent its spread through the silkworm nurseries. After twenty years of arduous labor, he published in 1836…Although unable to see the bacterial agents of disease because of blindness, Bassi envisioned from his studies on the mal del segno the bacteriological era which was to revolutionize medicine two decades after his death.”

Chemist Jean Baptiste Dumas, Pasteur’s mentor, prevailed upon the reluctant free lance scientist to head a mission of the French Ministry of Agriculture. “Although Pasteur knew nothing of silkworms or their diseases, he accepted the challenge,” wrote Dubos. “To Pasteur’s remark that he was totally unfamiliar with the subject, Dumas had replied one day: ‘So much the better! For ideas, you will have only those which shall come to you as a result of your observations!’”

A way of life was also at stake. As described in 19th century France by Emile Duclaux, Pasteur’s student and intimate collaborator (in Dubos’ book): “…the cocoons are put into a steam bath, to kill the chrysalids by heat. In this case, scarcely six weeks separate the time of egg-hatching from the time when the cocoons are carried to market, from the time the silk grower sows to the time when he reaps. As, in former times, the harvest was almost certain and quite lucrative, the Time of the Silkworm was a time of festival and of joy, in spite of the fatigues which it imposed, and, in gratitude, the mulberry tree had received the name of arbre d’or, from the populations who derived their livelihood from it.”

“The study of silkworm diseases constituted for Pasteur an initiation into the problem of infectious diseases,” wrote Dubos, who was influenced by the famous Russian soil microbiologist, Serge Winogradsky, who favored studying microbial interactions in natural environments rather than in pure laboratory cultures. “Instead of the accuracy of laboratory procedures he encountered the variability and unpredictability of behavior in animal life, for silkworms differ in their response to disease as do other animals. In the case of flacherie (a disease), for example, the time of death after infection might vary from 12 hours to 3 weeks, and some of the worms invariably escaped death…Time and time again, he discussed the matter of the influence of environmental factors on susceptibility, on the receptivity of the ‘terrain’ for the invading agent of disease. So deep was his concern with the physiological factors that condition infection that he once wrote, ‘If I had to undertake new studies on silkworms, I would investigate conditions for increasing their vigor, a problem of which one knows nothing. This would certainly lead to techniques for protecting them against accidental diseases.’”

“Usually, the public sees only the finished result of the scientific effort, but remains unaware of the atmosphere of confusion, tentative gropings, frustration and heart-breaking discouragement in which the scientist often labors while trying to extract, from the entrails of nature, the products and laws which appear so simple and orderly when they finally reach textbooks and newspapers,” wrote Dubos. “In many circumstances, he developed reproducible and practical techniques that in other hands failed, or gave such erratic results as to be considered worthless. His experimental achievements appear so unusual in their complete success that there has been a tendency to explain them away in the name of luck, but the explanation is in reality quite simple. Pasteur was a master experimenter with an uncanny sense of the details relevant to the success of his tests. It was the exacting conscience with which he respected the most minute details of his operations, and his intense concentration while at work, that gave him an apparently intuitive awareness of all the facts significant for the test, and permitted him always to duplicate his experimental conditions. In many cases, he lacked complete understanding of the reasons for the success of the procedures that he used, but always he knew how to make them work again, if they had once worked in his hands.”

Though famed for disproving the spontaneous generation of life, immunization via attenuated living vaccines and the germ theory of infectious disease: “Pasteur often emphasized the great importance of the environment, of nutrition, and of the physiological and even psychological state of the patient, in deciding the outcome of the infectious process,” wrote Dubos. “Had the opportunity come for him to undertake again the study of silkworm diseases, he once said, he would have liked to investigate the factors which favor the general robustness of the worms, and thereby increase their resistance to infectious disease…A logic of Pasteur’s life centered on physiological problems is just as plausible as that which resulted from the exclusive emphasis on the germ theory of contagious disease.”

The 21st century is riddled with insect colony conundrums and mysteries. For example, why among the social insects are honey bees plagued by Colony Collapse Disorder, while “Colony Expansion Disorder” prevails for other social insects in the USA. Rather than collapsing, USA colonies of Argentine ants are forming “super-colonies,” and red imported fire ant colonies are growing stronger by the day and annually expanding their North American geographic range; this despite being deliberately dosed with pesticides and attacked by biocontrol organisms (perhaps even more so than the beleaguered honey bees). And quite independently of mortgage rates and housing sales, Formosan subterranean termite colonies damaging billions of dollars of USA housing stock are happily munching away at both live trees and “dead-tree” wooden housing assets with little collective danger of colony collapse, though individual colonies come and go.

Perhaps beekeeping and crop pollination would be easier if Colony Collapse Disorder were an actual “disorder” as defined by the Diagnostic and Statistical Manual of Mental Disorders (DSM), and honey bees were endowed with sufficient consciousness and behaviors amenable to bee psychology or psychiatry.

The very real plight of honey bee colonies or hives is still in what Dubos would call the “atmosphere of confusion, tentative gropings, frustration.” At the most recent Entomological Society of America annual meeting, roughly a century and a half after silkworm colony collapse was eliminated by better more sanitary rearing practices, honey bee health was still puzzling. Honey bee colony loss in Virginia increased to 30% from 5-10% in recent years, possibly due to disease pathogens, pesticides and immune system suppression, say Virginia Tech researchers (e.g. Brenna Traver) studying glucose oxidase (GOX), an indicator of immunity in social insects. Honey bee social immunity is complex, involving factors as diverse as pheromones and grooming, and honey bee production of hydrogen peroxide (H2O2), which sterilizes food for the colony.

Nosema ceranae, a global gut pathogen, was seen all around the USA in 2007 at the same time as Colony Collapse Disorder. Black queen cell virus is another culprit, along with deformed wing virus, which is spread among honey bees by varroa mites. Then it is hard to overlook that over 120 different pesticides and their metabolites have been found in honey; including common beekeeper-applied pesticides such as coumaphos, fluvalinate, chlorothalonil and the antibiotic fumagillin. At the University of Puerto Rico, Gloria Dominguez-Bello is testing oxytetracycline and other commonly used antibiotics for their effects on honey bee microbes similar to those known to affect everything from obesity and brain function to organ transplants.

Those familiar with Pasteur’s entomological research on silkworm colony collapse in the 1800s would have experienced a sense of deja vu at the most recent Entomological Society of America meetings listening to Gloria DeGrandi-Hoffman, a research leader at the USDA-ARS Carl Hayden Bee Research Center in Tucson, Arizona. Nutrition, stress and pesticides may indeed be involved, but more focus is warranted for honey bee microbial health and gut microbes. Honey bee nutrition and microbiology is complicated by seasonal variations with changing food sources. According to DeGrandi-Hoffman, a lack of beneficial microbes may set honey bees up for infectious diseases like chalkbrood.

For example, pesticides used for Varroa mite control and potent beekeeping antibiotics like thymol and formic acid can affect the Lactobacillus microbes bees need for digestion and preservation of pollen as beebread, said DeGrandi-Hoffman. When bacterial plasmids found in high numbers in beebread are plated with the pathogen Aspergillus flavus, the pathogen rapidly loses virulence.

It is likely honey bees rely on beneficial microbes to protect from harmful pathogens, as honey bees have among the fewest immune system genes of any insect. Thus, when California almond growers spray fungicides, insecticides and miticides, a side effect could be fewer beneficial microbes in honey bee guts and in beebread. Thus, the honey bees would be less healthy and more susceptible to diseases like chalkbrood. Probiotic supplements designed to add beneficial microbes to honey bee diets are being tested in some California orchards. No doubt a familiar concept to those shopping for probiotic yogurts.


Get every new post delivered to your Inbox.

Join 46 other followers