Termite Power! (Green/Alternative Energy)

February 25, 2015

TERMITE BIOMASS ENERGY conversion offers a potential 95% to 99% efficiency in converting woody plants into usable energy forms comparable to ethanol fuels and petroleum products. “Termites are regarded as harmful because of the ability to decompose cellulosic materials such as houses made of wood,” said University of the Ryukyus (Okinawa, Japan) researchers Toru Matsui, Gaku Tokuda and Naoya Shinzato in the journal Recent Patents on Biotechnology. However, “Termites and/or their symbionts (e.g. gut protozoa & bacteria) are potentially good resource of functional genes for industrial applications…for biomass utilization, environmental remediation, and fine-chemicals production.”

Several termite genes have already been patented for biofuel (cellulase) and fighting infections (antimicrobial peptides). Combinations of cellulase enzymes and anaerobic symbionts have also been harnessed to produce hydrogen fuel (H2 gas) from waste plastics. “Lignin treatment by anaerobic bacteria from the gut of” several termite species has also been patented; thus pointing towards a greener pathway in place of today’s less environmentally-friendly caustic chemical processes. Termite energy production mechanisms might also be released as Open Source scientific information, instead of patented, as was once common in the scientific world. Indeed, the real practical innovations for sustainable world energy production may be in turning the raw material of biological science basic research into economical applied chemical engineering and bio-engineering solutions. In other words, a new energy production landscape dotted with bio-refineries approaching the 95% to 99% energy conversion efficiency of termite guts digesting woody plant and fiber materials is an objective worth working towards.

Being an ancient insect order, termites have been tapping into Earth’s abundant woody plant resources for perhaps 400 million years; well before dinosaurs and then humans roamed and pillaged the planet. “Cellulose is the most abundant biomass on the earth,” write the Ryukyus researchers. “Termites thrive on plant biomass, in which the major constituents are cellulose, hemicellulose (i.e. non-cellulosic carbohydrates), and lignin…In addition, it can be hydrolyzed to give a sugar pool which can be subsequently fermented to form ethanol, etc. However, the crystalline nature of cellulose had made it difficult to economically convert into useful chemical feedstocks…Other than cellulosic materials decomposition, there could be symbionts degrading lignin-derived compounds, a significant part of the wood constituents.”

At the hops-soaked Entomological Society of America (ESA) annual meeting in Portland, Oregon, the parallels between microbrewing (hops & microbes), baking (yeasts; Voodoo donuts) and termite guts as fermentation vats (bio-refineries) producing energy fuels was bubbling just below the surface. Several research labs, including Michael Scharf’s Purdue University lab, are evaluating the genes and metabolic processes innate to termites as well as the contributions of protozoa, bacteria and other microbes living as symbionts in termite guts and helping digest plant lignins and cellulose into usable energy compounds. Figuring out how termites and their gut microbes are such efficient converters of plant matter into energy is a huge undertaking, even with the latest DNA and genetic tools.

Brittany Peterson, an ESA termite biofuel presenter working in Scharf’s lab writes on her web page about “the co-evolution of termites and their over 4,000 symbiotic microorganisms.” The implication being that the termite hindgut is a bio-refinery where termites and their microbial symbionts constitute the equivalent of a vast unknown ecosystem whose parameters are just now being delimited. Peterson and the Scharf lab view termite guts as a model system for studying synergy and biomass processing of tough toxins like lignin. In other words, as the basis and inspiration for designing green bio-refineries for alternative energy and feedstock production processes more energy efficient than turning food crops like corn into ethanol fuel.

Of course, this means figuring out exactly how termites and their several thousand hindgut microbes extract simple sugars from wood’s complex lignin-cellulose polymer structure. This termite/microbe “digestion” (or depolymerization) has an amazing 95%-99% efficiency that industrial biomass processing or biofuel production cannot match even using very toxic caustic chemistries. Most research on termite gut microbes has focused on protozoa, but Peterson envisions adding bacteria and termite-produced enzymes to create a synergistic bio-refinery mixture. In other words, replacing current caustic and energy inefficient biomass conversion chemistries with greener, more energy efficient biological technologies composed of termite-derived enzymes, bacteria and protozoa to depolymerize biomass and produce usable sugars/energy.

The synergy of termite (host) and gut microbes likely makes possible the observed over 95% lignin-cellulose biomass processing efficiency; 82% of the genes for lignin-cellulose processing, including high expression of cellulase enzymes, come from or are innate to the termite itself rather than the symbiotic gut microbes, Peterson told the ESA annual meeting. Though the termite-microbe synergism boosts the the energy efficiency to quite high levels approaching 100%. At least for woody materials.

Interestingly, though, when termites eat paper, most of the biomass processing genes come from the gut microbes. Thus, a quite complex digestive ecosystem that seems to vary greatly with the food (feedstock) input. The gut microbes also help termites detoxify harmful materials and provide antioxidant protection. Scientific bioassays using various combinations of antibiotic drug treatments and anti-protozoa diets are enabling the Scharf lab to construct a microbial “library” for continuing research, Peterson told the ESA. Recent experiments with bacteria isolated from the subterranean termite Reticulitermes flavipes, indicate that the bacteria either alone or via interaction with protozoa boost glucose (sugar; an energy feedstock) release from lignin-cellulose (plant) biomass.

In the future, it is conceivable that bio-refineries using termite enzymes, bacterial enzymes and protozoa will make today’s ethanol and biomass to energy conversion processes look like toxic, inefficient relics of a primitive industrial energy production past. But it will likely be many more years before bio-engineers and chemical engineers are ready to begin the commercial harvest of termite energy to power our vehicles, the Internet, etc.


Termites: Good Medicine (Antibiotic Alternatives)

January 2, 2015

[Note to Search Engines: This is Not Another Termite Poop Story.]
Antibiotic-Resistant Bacteria Beaten by Termite Innate Immune System (the science part)

Antiseptic procedures and germ theory, stuff now routine like doctors and nurses washing their hands to avoid contaminating patients, entered modern medicine via 19th-century applied entomology aimed at solving a mysterious silkworm population decline baffling Italy’s Agostino Bassi and France’s Louis Pasteur (See blog, The Mysteries of Colony Collapse). Today, Pasteur might be looking over the shoulder of Yuan Zeng in Xing Ping Hu’s Urban Entomology Lab at Auburn University, wondering how termites make themselves more robust and immune to disease. After working with silkworms and formulating modern germ theory, Pasteur realized that “the exclusive emphasis on the germ theory of contagious disease” was a very incomplete view of reality in need of modification; a radical notion that would be opposed by many in modern medicine even today, as germ theory has attained the status of orthodoxy and relegated the alternatives to the fringes.

Pasteur told colleagues that if he had the chance to go back to silkworm entomology again he would focus on nutrition, the environment and physiology (e.g. immunity) to increase robustness, vigor and disease resistance. Stuff that would be cutting edge in the 21st century. Stuff like termite entomologist Yuan Zeng’s study of how termite “innate immune systems” overcome MultiDrug Resistant (MDR) bacteria infecting over 2 million people annually in the USA. MDR bacteria in the USA annually kill over 23,000 “because they are untreatable with today’s drugs,” Zeng told the Entomological Society of America (ESA) annual meeting. MDR bacteria are also becoming “a significant global health threat.” An excellent YouTube video of Yuan Zeng describing her Auburn University research on termites defeating MDR bacteria is now available.

Zeng’s previous research with powdered extracts of Eastern subterranean termites (Reticulitermes flavipes) against bacteria causing human gastric distress lends credibility to traditional folk medicines containing insects. “Our previous research on disease resistance in R. flavipes workers showed that the crude extract of naive termites constitutively displayed a broad-spectrum antibacterial activity including agents responsible for human gastric infections,” Zeng told the ESA annual meeting. The logic behind using termites as medicines or drugs is that subterranean termites forage and nest in soil loaded with pathogenic microbes, making them a “source for novel antimicrobial discovery because they have evolved effective innate immune systems in confronting various harmful microorganisms.”

If a termite species is both pest and medical cure, then might an alternative to chemical fumigation be to harvest (e.g. trap or vacuum) the termites and sell them as a medicinal crop? That is a question that rarely, if ever, is asked. “Science has already proven the existence of immunological, analgesic, antibacterial, diuretic, anesthetic, and antirheumatic properties in the bodies of insects,” wrote Brazilian researcher Eraldo Medeiros Costa-Neto in an article titled ENTOMOTHERAPY OR THE MEDICINAL USE OF INSECTS. “Since early times, insects and the substances extracted from them have been used as therapeutic resources in the medical systems of many cultures. Commonly considered to be disgusting and filthy animals, many insect species have been used live, cooked, ground, in infusions, in plasters, in salves, and as ointments, both in curative and preventive medicines.”

Florida is the place where all the termites of the world seem to be coming to live. The Palm Beach, Florida, TV news recently warned of a Caribbean invasion of conehead or tree termites, known scientifically as Nasutitermes corniger. Conehead termites avoid competing with subterranean termites by building “beach-ball size” nests above ground and “brown tubes up the outside walls of houses,” and according to the TV make wood look like “shredded wheat.” Even “aggressive spraying” dating back to 2001 failed in its goal of eradication, and 100 million conehead termites nesting in 120 colonies amongst 42 properties were sprayed in 2012. Conehead termites, which are “distributed from southern Mexico to northern Argentina and the West Indies,” are “commonly used in traditional medicine in Northeast Brazil,” say scientists in Brazil. No doubt the coneheads will turn up again and again in Florida until they are finally accepted as residents. That is the nature of invasive insects.

Perhaps instead of chemical eradication programs, these termites should be harvested and exported to Brazil and elsewhere for medical use. “With the increase in microbial resistance to antibiotics, the use of natural products represent an interesting alternative for treatment,” wrote Henrique Coutinho and his Brazilian colleagues in an article titled “Termite usage associated with antibiotic therapy.” Crushed and powdered conehead termites mixed with a conventional antibiotic drug (which was failing, due to bacterial resistance) produced “a new weapon against the bacterial resistance to antibiotics” via a termite-drug synergy. In other words, mixing powered conehead termites with the drug made for a more powerful antibiotic medicine than using the antibiotic drug alone. At least the coneheads are good for something.

Yuan Zeng told the ESA and YouTube that she fed subterranean termites “sublethal concentrations of MultiDrug Resistant (MDR) pathogens, Methicillin-resistant Staphylococcus aureus (MRSA) or Pseudomonas aeruginosa (PAOl),” which induced “an alternation of protective proteins” produced by the termite’s innate immune system. “The composition changes of proteins following the feeding of MDRs significantly inhibited the growth of P. aeruginosa and MRSA,” said Zeng. “The results of this research could be a significant breakthrough for developing novel effective drugs” to fight human disease pathogens resistant to multiple antibiotic drugs. Worldwide, millions of people stand to benefit.

Known termite immune proteins include termicin, spinigerin, lysozome, tGNBPs, and “two unidentified proteins from several termite species with potent antibacterial and antifungal activities.” However, Zeng’s termite antimicrobial compounds are different; though there is still much scientific work to be done.

In the journal “Recent Patents on Biotechnology,” Japanese researchers Toru Matsui, Gaku Tokuda and Naoya Shinzato from University of the Ryukyus in Okinawa discussed patenting termite genes for alternative energy and drug production. “Although termites are regarded as harmful because of the ability to decompose cellulosic materials such as houses made of wood,” said Matsui et al. “Termites and/or their symbionts are potentially good resource of functional genes for industrial applications…for biomass utilization, environmental remediation, and fine-chemicals production.” Several termite genes have already been patented for biofuel (cellulase) and fighting infections (antimicrobial peptides).

A fungus-growing termite, Pseudacanthotermes spiniger, is notable for producing termicin, an antifugal peptide, and spinigerin, an anti-bacterial and antifungal peptide. “These peptides and the corresponding cDNAs have been patented as useful for protection of plants from pathogenic fungi or medical purposes,” said Matsui et al. “Similarly, some chemical antibiotic compounds isolated from termites have also been patented for the use of treating a microbial infection or disease.”

“Although entomotherapy is an ancient practice, it is still relatively unknown in the academic world,” wrote Costa-Neto. “In fact, as Holt already stressed in 1885, the advance of medical science and the suppression of folk knowledge swept away belief in the medicinal qualities of insects.”

Insect species outnumber plant species 16-fold, according to an article in The Indian Journal of Traditional Knowledge: “Yet very few researchers have concentrated on the medically useful properties of insects. Most research with insects revolves around getting rid of them.”

Medical Botany refers to plants used for medical or health purposes. But there is no entomological equivalent. Medical Entomology addresses arthropods as medical or pest problems; and by analogy is like Weed Science to Botany. Insects as medicinal cures or health enhancers are outliers, orphan science, folk healing curiosities; perhaps supermarket tabloid fodder alongside celebrity scandals and UFO abductions.

In South India winged subterranean termites (Odontotermes formosanus) are traditionally roasted in earthen pots and consumed for three evenings to treat asthma. But their anti-bacterial qualities have not been explored, “mainly because of the difficulty in harvesting large numbers.” Memo to South India: An abundance of potentially medicinal subterranean termites are ready for harvesting and roasting for export in south Florida, Hawaii, New Orleans, Auburn, Mississippi, etc. Perhaps in some distant future a doctor will say, “Take two powdered termites and some Vitamin C, and call me in the morning.”


Bed Bug Herbal Remedies Work Well With Traps

July 15, 2013

THE NEEM TREE (Azadirachta indica), a medicinal mahogany tree (Meliaceae) native to arid broadleaf and scrub forests in Asia (e.g. India), has been used for over 4,000 years in Vedic medicine and has a heavy, durable wood useful for furniture and buildings because it is resistant to termites and fungi. Nonetheless, despite US EPA registration as a pesticide for crop and home use and a long legacy of neem seed oil use for cosmetics, shampoos, toothpastes and medicines in India, Ohio State University researcher Susan Jones could not find any households near her Columbus, Ohio, home willing to try neem in her bed bug control experiments.

“We had no study takers because of the regulatory requirements,” which scared off people, Jones told the Entomological Society of America (ESA) Annual Meeting. “You have to read page after page to residents about toxicity without being able to talk about the toxicity of alternative products” not as safe as neem. In October 2012, an empty house with bed bugs became available for research when its occupant opted to escape a bad bed bug infestation by leaving the infested home; and inadvertently transferred the infestation to their new home.

Jones monitored the empty house by placing in each room four (4) Verifi(TM) CO2 (carbon dioxide) traps and four (4) Climbup(R) Interceptor traps. Visual inspections revealed few bed bugs. On October 24, 2012, prior to neem treatments, 38 bed bugs were captured in Climbup(R) traps, indicating bed bug infestations only in the master bedroom and bed of the empty house. Eight Verifi(TM) traps captured 48 bed bugs in the dining room, guest room and master bedroom. As part of an IPM (integrated pest management) approach using multiple treatment tools: Electrical sockets were treated with MotherEarth(R) D diatomaceous earth; 3.67 gal (13.9 l) at a rate of 1 gal/250 ft2 (3.9 l/23 m2). Gorilla Tape(R) was used to seal around the doors and exclude bed bug movement from other rooms.

The neem seed oil product, Cirkil(TM) RTU, was sprayed in various places, including on books, backs of picture frames and cardboard boxes. Vials of the insecticide-susceptible Harlan bed bug strain were placed around the house for on-site neem seed oil vapor toxicity assays. Two days after spraying, bed bug mortality from neem seed oil vapors was highest in confined spaces; with 48% mortality in vials placed between the mattress and box spring, versus 28% mortality in open spaces. On Nov. 6, two weeks post-treatment, 123 dead bed bugs were vacuumed up and live bed bugs were detected in a second bedroom. Bed bug numbers were low because the monitoring traps were doing double duty, also providing population suppression by removing many bed bugs.

Herbal oils can also be combined with heat chambers at 50 C (122 F) or carbon dioxide (CO2) fumigation chambers to combat bed bugs. However, heat chambers are expensive, and CO2 fumigation with dry ice can pose handling difficulties and room air circulation issues, Dong-Hwan Choe of the University of California, Riverside, told the Entomological Society of America (ESA).

Herbal essential oils are useful against head lice, and in Choe’s native Korea clove oil from from the leaves and flower buds of clove plants (Syzygium aromaticum) is used in aromatherapy and as a medicine. Clove oil is rich in GRAS (Generally Recognized as Safe) compounds such as eugenol, beta-caryophyllene and methyl salicylate (sometimes called wintergreen oil), which are useful as vapors in control of insects and microbes. In dentistry, clove oil (eugenol) is widely used as an antiseptic and pain reliever.

Clove essential oils work faster in closed spaces or fumigation chambers (e.g. vials, Mason jars) than in open spaces. Essential oils are even slower to kill bed bugs when orally ingested. In experiments at varied temperatures, Choe placed 10 bed bugs in plastic vials with mesh tops. The vials were placed inside 900 ml (1.9 pint) Mason jars; filter paper treated with essential oils was placed on the underside of the Mason jar tops.

Herbal essential oils worked faster at higher temperatures. For example, methyl salicylate fumigant vapors provided 100% bed bug mortality in 30 hours at 26 C (79 F); 10 hours at 35 C (95 F); and 8 hours at 40 C (104 F). Eugenol vapors produced similar results; there were no synergistic or additive effects from combining eugenol and methyl salicylate. Choe told the ESA that his future trials will include: botanical oil granules; exposing bed bug-infested items to essential oil vapors; and checking for sublethal essential oil effects on parameters such as female bed bug reproduction.

Narinderpal Singh of Rutgers placed bed bugs on cotton fabric squares treated (half left untreated) with synthetic pesticide and herbal essential oil products: 1) Temprid(TM) SC, a mixture of imidacloprid and cyfluthrin (neonicotinoid and pyrethroid insecticides); 2) Ecoraider(TM) (Reneotech, North Bergen, NJ) contains FDA GRAS ingredients labeled as “made from extracts of multiple traditional herbs that have been used in Asia for hundreds of years for therapy and to repel insects;” 3) Demand(R) CS, which contains lambda-cyhalothrin (a pyrethroid insecticide); 4) Bed Bug Patrol(R) (Nature’s Innovation, Buford, FL), a mixture with the active ingredients listed as clove oil, peppermint oil and sodium lauryl sulfate.&&

Temprid(TM) SC and Demand(R) CS proved best on the cotton fabric test. In arena bioassays with Climbup(R)Interceptor traps, none of the four insecticides were repellent to bed bugs (i.e. repellency was less than 30%). Ecoraider(TM) was equal to Temprid(TM) SC and Demand(R) CS against the tough to kill bed bug eggs. Singh concluded that field tests of Ecoraider(TM) as a biopesticide were warranted.

Changlu Wang of Rutgers told the ESA that travelers might be protected from bed bug bites and bring home fewer bed bugs if protected by essential oil repellents, as well as by more traditional mosquito and tick repellents like DEET, permethrin and picaridin. Repellents are more convenient and less expensive than non-chemical alternatives such as sleeping under bed bug tents and bandaging yourself in a protective suit.

Isolongifolenone, an odorless sesquiterpene found in the South American Tauroniro tree (Humiria balsamifera), is among the botanicals being studied, as it can also be synthesized from turpentine oil and is as effective as DEET against mosquito and tick species. Bed bug arena tests involve putting a band of repellent around a table leg, with a Climbup(R)Interceptor trap below. If the bed bug falls into the trap, it is deemed to have been repelled from the surface above. In actual practice, the bed bug climbs up the surface and goes horizontal onto the treated surface and drops or falls off if the surface is repellent. Isolongifolenone starts losing its repellency after 3 hours; 5%-10% DEET works for about 9 hours. In arena tests with host cues, 25% DEET keeps surfaces repellent to bed bugs for 2 weeks. But isolongifolenone is considered safer, and Wang is testing higher rates in hopes of gettting a full day’s protection.


Beneficial Termites, An Oil Alternative for the Hydrogen Economy

August 28, 2009

TERMITES AS beneficial insects? Seems preposterous when Formosan subterranean termites (Coptotermes formosanus) cause billions of dollars of structural damage annually in the U.S. And termites are not found in the catalogs of Rincon-Vitova and other insectaries selling beneficial insects that minimize pesticide use by biologically destroying pests. But back in his Nobel Prize-winning days as a University of California, Berkeley, physicist, U.S. Dept. of Energy Secretary Steven Chu looked deeply inside termites and saw microbial biorefineries producing hydrogen gas and a potential solution to America’s almost addictive dependency on foreign oil imports.

Global warming worriers might think this a bit odd, as collectively the world’s termites emit an estimated 15% of global methane, a greenhouse gas and natural gas energy fuel. But, oddly enough, the eastern subterranean termites (Reticulitermes flavipes) and Formosan subterranean termites dining on wood structures in the USA are more environmentally correct creatures, eschewing methane and emitting valuable hydrogen gas instead. This hydrogen gas, if produced in bio-refineries powered by termite technologies, could replace traditional carbon-based petroleum fuels and reduce oil dependence.

In chemical terms: For every mole (a chemical unit of measurement) of wood glucose consumed, subterranean termites excrete 2-4 moles of hydrogen gas. Just like cows, termites have an array of gut microbes aiding digestion of plant cellulose. Microbial prospectors searching the termite gut instead of rainforest jungles, have discovered previously unknown gut microbes converting wood products into hydrogen gas. Harnessed in bioreactors, hydrogen gas produced by termites and their gut microbes can be the basis for a new hydrogen economy as the power source for pollution-free vehicles.

Mississippi State University’s Zhong Sun and others reporting at Entomological Society of America annual meetings note that termites and their gut protozoa are the best biological hydrogen production technology known. In part, this is because termites can convert 74-99% of cellulose substrate into fermentable sugars. Thus, one gram (0.035 oz) of wood in a termite biorefinery can generate 10 liters (1 quart) of hydrogen gas.

Onward to the hydrogen economy, with subterranean termite gas in the automobile fuel tank.