Natural Nicotine Heals Honey Bees

January 23, 2017

NEONICOTINOID INSECTICIDES (e.g. thiamethoxam, imidacloprid, clothianidin) developed at Bayer Japan as safer alternatives (e.g. to human spray applicators) to the natural nicotine once widely used by farmers and gardeners, is now suspected of contributing to honey bee health problems like learning disorders and colony collapse. In contrast, natural nicotine, found in honey produced by bees working tobacco fields, as well as in pollen, nectar, leaves and other plant parts, is a nutrient and medicine helping to heal weak honey bee colonies, said Susan Nicolson of South Africa’s University of Pretoria at “Entomology Without Borders,” a joint meeting of the International Congress of Entomology (ICE) and the Entomological Society of America (ESA) in Orlando, FL.

Natural nicotine, even if produced organically in a sustainable recycling sort of way from tobacco waste products, is mostly shunned in organic farming and gardening. “Over 120 million sites will be returned on a web search on tobacco, but most will not be associated with plant science,” wrote USDA-ARS researcher T.C. Tso in Tobacco Research and Its Relevance to Science, Medicine and Industry. “Many plant scientists in academic institutions cannot obtain grant support for projects using tobacco as a research tool. Some even have to avoid tobacco because of the applying of ‘political correctness’ to academic research. The tobacco plant has served as a valuable tool since the dawn of plant and biological sciences, so it is indeed a great loss to scientific progress that a research tool already invested with so many resources and about which there is such abundant knowledge and such great potential for new advancement is now being wasted.”

Honey bees readily consume bitter alkaloids such as nicotine mixed in sugary plant nectars. Adult honey bees excel at detoxifying alkaloids such as nicotine, which should not be surprising, as survival depends on it. Younger, larval honey bees have fewer enzymes to detoxify nicotine, but also survive quite well even when their royal jelly contains high levels of nicotine. Honey bees and insects immune to nicotine, such as green peach (peach-potato) aphids, transform nicotine into less toxic butanoic acid. A knotty question naturally arises: If natural nicotine heals honey bees, why are synthetic neonicotinoids so terribly different? Are natural compounds like nicotine inherently more beneficial and their synthetic analogs (e.g. neonicotinoids) inherently bad, perhaps due to subtle differences in molecular structure? If bees and other pollinators are a major concern, perhaps natural product restrictions on nicotine need to be relaxed to provide competition to the synthetic neonicotinoids.

“Alkaloids, especially in the nicotine family, have been the main focus of tobacco research because alkaloids are the characteristic product of tobacco,” writes Tso. Dozens of other tobacco molecules are relatively overlooked, including sugar compounds providing least-toxic botanical insect and mite control. Anabasine (neonicotine), an alkaloid found in tobacco and other plants, has also been widely used as a natural insecticide. Strangely enough, anabasine is also an insect attractant and a poison gland product of Aphaenogaster ants. In a strange urban twist to the wild bird practice of lining nests with medicinal herbs emitting essential oils counteracting parasites: Researchers in Mexico discovered urban birds lining nests with cigarette butts to similar advantage. In times past, organic gardeners soaked cigarette butts in water to get a nicotine spray brew. Historically, most commercial nicotine insecticide used on farms and gardens was a sustainable tobacco waste extract.

There are 60-80 described tobacco or Nicotiana species, some available in seed catalogs and grown as ornamentals. Most Nicotiana species grow wild in the Americas, with some in Australia and Africa. “Tobacco plants are easy to grow and have a short growing period,” writes Tso. “Each tobacco plant may produce 14 g or about 150,000 seeds which may provide seedlings for 2 to 5 acres (1–3 ha) of field tobacco, depending on the type.” In Europe, oil extracted from tobacco seeds is being explored for an alternative bio-diesel fuel industry, with dry leftovers as animal feed.

Native American Nicotiana species are being integrated into China’s ancient agricultural interplanting tradition. When tobacco is interplanted in vineyard rows, tobacco roots and grape roots intermingle. Perhaps some sort of biological soil fumigation occurs. Whatever the mechanism, vineyards are cleansed of soil-dwelling phylloxera aphids, a pest that almost destroyed wine grape growing in France in the 1800s and is still a worldwide problem. According to the journal Chinese Tobacco Science, intercropping tobacco with sweet potato also alleviates soil and other pest problems, maximizing profits per unit area of land. Burley tobacco is intercropped with cabbage and other vegetable crops, according to the Journal of Yangtze University (Natural Science Edition).

Neonicotinoids are soluble in water and absorbed systemically by plants, and some are sprayed on urban lawns and landscapes. However, over 80% of synthetic neonicotinoids are applied to seeds prior to planting hundreds of millions of acres of corn, soybean, sunflowers and other crops. In Canada’s Ontario and Quebec provinces, 100% of corn seed is treated with neonicotinoids, said Nadejda Tsvetkov of Toronto’s York University at “Entomology Without Borders.” Though neonicotinoids were seldom found in corn pollen samples, somehow, perhaps by water transport, neonicotinoids are finding their way into clover and willow tree pollen far from corn fields.

“For a lot of farmers it is hard to get seeds untreated, especially corn,” as commercial seed is routinely treated with neonicotinoids regardless of need, said the University of Maryland’s Aditi Dubey at “Entomology Without Borders. In Maryland and other mid-Atlantic USA states where low pest pressures are the norm, neonicotinoid seed treatments are both unneeded and counterproductive. In 3-year Maryland rotations with double-cropped soybeans, winter wheat and corn, sowing seeds treated with thiamethoxam or imidacloprid reduced beneficial predatory ground beetles and increased slug damage to crops. Mid-Atlantic USA farmers typically apply 4 unnecessary prophylactic seed treatments every 3 years. Besides reduced biocontrol and more pest damage, soil accumulation over time is a disturbing agro-ecosystem possibility.

Alternative seed treatments include natural plant hormones such as salicylic acid and methyl jasmonate, which induce a natural immunity called induced systemic acquired resistance (SAR). Crops such as lettuce and argula (rocket) grown from seed treated with salicylic acid and methyl jasmonate also release volatile gases repelling pests such as sweet potato whitefly, a major worldwide pest, said Ben-Gurion University’s Mengqi Zhang at “Entomology Without Borders,” a gathering of 6,682 delegates from 102 countries. Numerous botanical materials and microbes have also been investigated around the world as alternative seed treatments.

A proactive approach to honey bee and bumble bee health includes a diversified landscape sown with herbs and medicinal botanicals for self-medication, not just natural nicotine from tobacco nectar or other sources. Thymol, an essential oil found in thyme and many other plants, is already sprayed in hives by beekeepers to combat Varroa mites. At “Entomology Without Borders,” North Carolina State University’s Rebecca Irwin reported laboratory choice tests where bumble bees rejected nicotine. In field tests, bumble bees were given a choice of different colored flowers each with a different botanical such as thymol, nicotine, anabasine and caffeine. Bumble bees only selected flowers with thymol to self-medicate. Interestingly, thymol and other herbal essential oils also synergize nicotine, boosting effectiveness against disease pathogens and perhaps also minimizing the likelihood of colony collapse.

Landscapes and hedgerows sown with medicinal plants such as thyme, sunflower and foxglove minimize bumble bee disease transmission, said Lynn Adler of the University of Massachusetts, Amherst. The current USA farm bill will actually pay farmers to plant bee-friendly sunflower edges or hedgerows around canola fields. Antimicrobial and medicinal honeys derived from sunflower, bay laurel (Laurus nobilis), black locust, etc., also effectively combat bee diseases like chalkbrood and foulbrood, said Silvio Erler of Martin-Luther-Universität in Halle, Germany at “Entomology Without Borders.”

Bee pharmacology is also useful in human medicine. In Oaxaca, Mexico gangrene is stopped and wounds are healed by combining maggot therapy and honey, reported Alicia Munoz. Maggot therapy uses sterilized (germ-free) green bottle fly maggots to disinfect and cleanse wounds by eating unhealthy tissues and secreting antibiotics, allowing healthy pink tissue to grow back under honey-soaked gauze. This cost-effective approach reduces hospital stays, lowers morbidity and can eliminate the need for surgery. It may sound yucky, but for diabetics and patients with bed sores or wounds where surgery is medically impossible, a few maggots and a little honey is preferable to amputating wounded or infected limbs.

Cancer-fighting bee propolis products were touched upon at “Entomology Without Borders” by Chanpen Chanchao of Chulalongkorn University in Bangkok, Thailand, where hives of stingless bees are reared like conventional honey bees. Cardol, a major component of propolis from the Indonesian stingless bee, Trigona incisa, causes early cancer cell death by disrupting mitochondrial membranes and “producing intracellular reactive oxygen species (ROS).” ROS are essential to energy, immunity, detoxification, chemical signaling, fighting chronic and degenerative diseases, etc. Cardol “had a strong antiproliferative activity against SW620 colorectal adenocarcinoma,” killing colon cancer cells within 2 hours, followed by complete cell necrosis within 24 hours. Thus, cardol is an “alternative antiproliferative agent against colon cancer.”

Advertisements

Grapes Love Tobacco & Sage

June 13, 2015

GRAPE VINES GAIN and pests suffer when TOBACCO and SAGEBRUSH grow in the same neighborhood. For example, Chinese experiments show that when tobacco roots intermingle with grape roots, vineyards soils are progressively cleansed of the dreaded soil-dwelling phylloxera aphid; the same phylloxera aphid that almost completely destroyed French grape growing in the 1800s, before resistant rootstocks were discovered. In recent decades, the phylloxera aphid has evolved new forms that destroy formerly-resistant rootstocks. But on the positive side, the phylloxera plague in nineteenth century French vineyards was a major catalyst for innovations such as the development of modern scientific agriculture and modern methods for fumigating or disinfesting sick soils.

Tobacco plants get a bad rap today, as the source of abused and addictive products with adverse health effects. But it was not always so, and need not be so today, write David A. Danehower and colleagues in the book, Biologically Active Natural Products: Agrochemicals: “When Columbus first arrived on the shores of North America, he found Native Americans growing and using a plant unknown to Europeans. This plant held great spiritual significance to Native Americans. Scientists who followed in the footsteps of the early North American explorers would later name this plant tobacco. Tobacco (Nicotiana tabacum) farming began in the early 1600s near the Jamestown colony in Virginia. As the use of tobacco products for smoking, chewing, and snuff was promoted in Europe, tobacco became a leading item of commerce between the colonies and England. Notably, George Washington and Thomas Jefferson both farmed tobacco. Thus, the history of America is inextricably linked with the history of tobacco production.”

The specific idea of interplanting tobacco with grapevines to control soil pests like phylloxera aphids is apparently a recent Chinese agricultural innovation. Why no one thought of it before is a mystery, as nicotine from tobacco plants has a long history as a fumigant and sprayed insecticide; and more recently sweet “sugar esters” (fructose, glucose, fatty acids) have been singled out from among the several thousand chemical compounds in tobacco as “new” natural insecticides (some fungi and other microbes are also killed). Perhaps agricultural tradition plays a role, as the Chinese have an ancient agricultural heritage that includes pioneering biological pest control (e.g. predatory ants to control citrus orchard pests) and routinely interplanting compatible plants for their pest-fighting and mutually beneficial effects. Of course, growing cover crops and beneficial insect plants like sweet alyssum in grape rows is becoming more common. And since ancient times, the Mediterranean areas of Europe and the Middle East have had grape vineyards interspersed with oaks (corks, barrels for wine grapes), olive trees and crops such as wheat. But never before has tobacco been grown among grape vines to control soil pests. Indeed, modern farmers seem to favor pumping liquid chemicals and volatile gases into the soil to combat soil pests.

Perhaps as close as a nineteenth century French grape grower came was Bernardin Casanova of Corsica, France, who in 1881 patented a liquid mixture of grape distillates, Corsican tobacco, spurge, laurel, grain straw, burnt cork and soap that was rubbed and poured on the base of grapevines to kill phylloxera. In California, which has native plants that are every bit as insecticidal as nicotine from tobacco, the only anti-phylloxera interplanting seems to have been new resistant rootstocks to eventually take the place of the old. In essence, a concession of failure and a starting over with new rootstock (and pulling out the old phylloxera-infested vines).

Like Mr. Casanova in nineteenth century France, the modern Chinese researchers started out with a watery solution containing tobacco; but in a bit more scientific fashion with controlled tests of the tobacco solution on young greenhouse-grown grape vines. “The results showed that aqueous extracts of tobacco had certain alleviating effects on phylloxera infection,” according to a 2014 abstract from the journal Acta Entomologica Sinica. “Both the aqueous extracts of tobacco at the concentration of 20 mg/mL and 50 mg/mL had an inhibition to phylloxera infection,” with a 50% reduction in phylloxera infection within 3 weeks (along with a reduction of fungal invaders that kill injured grape roots).

Chinese tobacco-grape laboratory and field studies were also reported in the Journal of Integrative Agriculture in 2014. The lab studies indicated that tobacco extracts in water were indeed a valid herbal (botanical) remedy against phylloxera aphids. In three years of field tests with tobacco interplanted in infested grape vineyards, phylloxera infestations of grape roots steadily decreased each year. “Tobacco was used as the intercropping crop because it includes nicotine, which is a source of bio-insecticides,” said the researchers. “The production of new grape roots was significantly higher in the intercropping patterns than in the grape monoculture in 2010, 2011 and 2012, and the vines gradually renewed due to the continuous intercropping with tobacco over three years…The results indicated that the secondary metabolites of tobacco roots had released to soil and got to the target pest.” Tobacco intercropping effects on grape plants was also measurable in terms of “cluster number per plant, cluster weight, cluster length, cluster width, berry number per cluster, mean berry diameter in the mid portions of the cluster, carbohydrate content, fruit color index, leaf width and branch diameter.” The researchers expect that this “Successful intercropping with tobacco” will stimulate more research with other insecticidal plants to disinfest vineyard soils.

We could probably end the blog item here, or have a second article as part II, but we have some interesting interactions among sagebrush and tobacco plants that can spillover to grape vineyards. Oddly enough, sagebrush and tobacco seem to get along very well. According to M.E. Maffei, writing in the South African Journal of Botany: “Aerial interaction of the wild tobacco (Nicotiana attenuata) and sagebrush (Artemisia tridentata subsp.) is the best-documented example of between-plant signaling via above-ground VOCs (Volatile Organic Compounds) in nature.” Wounded or “Clipped sagebrush emits many volatiles, including methyl jasmonate, methacrolein, terpenoids, and green leaf volatiles.” These sagebrush volatiles (VOCs) stimulate nearby tobacco plants to become less hospitable to caterpillar pests (fewer in number). The process is called priming and results in plants producing more chemicals deleterious to pests. For readers desiring all the details and more theory: In 2006, Kessler et al. published in a journal called Oecologia under the title “Priming of plant defense responses in nature by airborne signaling between Artemisia tridentata and Nicotiana attenuata.”

Big Sagebrush, known scientifically as Artemisia tridentata, is a native North American plant that can reach 4 meters in height and live from 30 to over 200 years in arid desert environments by using hydraulic lift to pump water from deep soil layers. The plants are a rich and underutilized source of medicinal compounds, insecticides, fungicides, natural preservatives, etc. Worldwide there are at least 500 Artemisia sagebrush species, many used in traditional medicines (e.g. China), cosmetics, insect repellents, and as spices and flavorings in foods. For example, Artemisia annua has attracted attention to combat malaria. Readers desiring a crash course in Artemisia species and their bio-active essential oils will find it online in an excellent 24-page review article in a journal called Molecules.

Big Sagebrush is “found in arid regions of North America from steppe to subalpine zones, dry shrub lands, foothills, rocky outcrops, scablands, and valleys,” wrote Christina Turi and colleagues in 2014 in the journal Plant Signaling & Behavior. “Traditionally, species of Big Sagebrush have been used as a ceremonial medicine to treat headaches or protect individuals from metaphysical forces. A total of 220 phytochemicals have been described in A. tridentata and related species in the Tridentatae. Recently, the neurologically active compounds melatonin (MEL), serotonin (5HT), and acetylcholine (Ach) were identified and quantified.” In other words, sagebrush plants and human brains and nervous systems have a lot in common.

Indeed, galanthamine, a botanical drug treatment for mild to moderate Alzheimer disease, can also be used to “treat” sagebrush. Galanthamine, which is named after the snowdrop plants (Galanthus species) where it was discovered, is also found in Narcissus and other common bulbs. Galanthamine is, according to researchers Turi et al., “a naturally occurring acetylcholinesterase (AchE) inhibitor that has been well established as a drug for treatment of mild to moderate Alzheimer disease.” Why bulb plants produce chemicals affecting both Alzheimer disease (human nervous systems) and sagebrush plants is a good question. One theory is that plants release these chemicals into the environment to communicate with and influence the behavior of other plants, and also perhaps deter or otherwise influence herbivorous animals. Environmentalists, overly preoccupied with worries about carbon dioxide and GMOs, might ponder the fact that human chemicals with medicinal effects released into the environment might be the bigger threat, affecting plants and ecosystems in ways not yet fully appreciated that may comeback to bite us.

The Western USA is known for its vast expanses, perhaps 50 million acres with Big Sagebrush, some of which is being displaced for vineyards in isolated valleys in the Pacific Northwest. I particularly like the description of the Big Sagebrush ecosystem at the Sage Grouse Initiative: “To many of us, sagebrush country symbolizes the wild, wide-open spaces of the West, populated by scattered herds of cattle and sheep, a few pronghorn antelope, and a loose-knit community of rugged ranchers. When you stand in the midst of the arid western range, dusty gray-green sagebrush stretches to the horizon in a boundless, tranquil sea. Your first impression may be of sameness and lifelessness—a monotony of low shrubs, the over-reaching sky, a scattering of little brown birds darting away through the brush, and that heady, ever-present sage perfume.”

About 90% of the native sagebrush steppe habitat in the eastern Washington grape growing area was removed to make way for the vineyards. But the 10% remaining sagebrush habitat may have important ecological benefits, such as improved natural or biological pest control in the vineyards. One suggestion is to leave some of the native Big Sagebrush around vineyards, for its beneficial ecological effects. “Perennial crop systems such as wine grapes have begun using cover crops and hedgerows to increase beneficial insects and promote sustainable vineyard management in areas like New Zealand and California,” Washington State University researcher Katherine Buckley told the 2014 Entomological Society of America (ESA) annual meeting in Portland, Oregon. “However, in arid wine growing regions such as eastern Washington, cover crops are often prohibitively expensive due to water costs. We wanted to determine if native plants, which require little or no irrigation, could be used to increase beneficial insects and enhance conservation biological control of vineyard pests in eastern Washington.”

The native sagebrush steppe ecosystem has a wide range of plants, but is characterized by species such as big sagebrush (Artemisia tridentata), rabbitbrush (e.g. Chrysothamnus, Ericameria spp.), bitterbrush (Purshia spp.) and perennial bunchgrasses (e.g. Agropyron, Stipa, Festuca, Koeleria, Poa spp.). The Big Sagebrush ecosystem is richer in species than meets the eye at first glance. Over 100 species of birds (e.g. sage grouse, sage thrasher, sage sparrow and Brewer’s sparrow) forage and nest in sagebrush communities, and they could provide a lot of insect biocontrol at less cost and with less environmental impact than chemical sprays.

A U.S. Forest Service report called Big Sagebrush a keystone species and “a nursing mother” to “31 species of fungi, 52 species of aphids, 10 species of insects that feed on aphids, 42 species of midges and fruit flies that induce galls, 20 species of insects that parasitize the gall inducers, 6 species of insects that hibernate in big sagebrush galls, 18 species of beetles, 13 species of grasshoppers, 13 species of shield-back katydids, 16 species of thrips, 74 species of spiders, 24 species of lichens, 16 species of paintbrushes, 7 species of owl-clovers, 5 species of bird’s beaks, 3 species of broom rapes, and a host of large and small mammals, birds, and reptiles.”

“After locating vineyards with some form of native habitat restoration in four different growing regions of eastern Washington, yellow sticky traps and leaf samples were used to monitor beneficial and pest insect numbers in the habitat restored vineyards and nearby conventional vineyards over a three year period,” said Buckley. The native plants, which are adapted to the region’s hot summers and cold winters, are home to at least 133 insect species. Native habitat vineyards had fewer pest insect species; and higher populations and a higher diversity of beneficial insects. Anagrus wasps, which are known to parasitize pesky grape leafhoppers, were most abundant in Big Sagebrush. More amazingly, this leafhopper biocontrol wasp was found year-round in Big Sagebrush, even when the plant was not flowering. No other plant, not even the photogenic wild roses planted at the end of vineyard rows and admired by tourists, hosted the tiny leafhopper biocontrol wasp year-round.

Garden herbs such as thyme (Thymus ssp.), mugwort (Artemisia ssp.) and fennel (Foeniculum ssp.) have all been tested in vineyard interrows because they are fungicidal against Botrytis cinerea, a fungus attacking grape clusters, and boost soil micro-nutrients like copper, manganese and zinc. Maybe at some point in time, the Chinese interplantings of tobacco and alternating strips of Big Sagebrush (or other Artemisia species) and garden herbs will all get integrated together with other cover crops and native hedgerows into grape vineyards for a more biological or natural approach to agriculture. With sagebrush and tobacco, we have only scratched the surface of vineyard possibilities.