Earthworm Compost, Medicinal Honey & Fewer Hive Sprays Avert Bee Collapse

HONEY BEE COLONY COLLAPSE DISORDER and subtle learning and memory pesticide effects were among Biocontrol Beat topics detailed in Feb. 2011 (Honey Bees, 24-Hour Surveillance Cameras & Pesticides). For many attendees of Entomological Society of America (ESA) annual meetings, the two reports on pesticide effects on honey bees and bumble bees in the 30 March 2012 issue of Science magazine were just two more data bits, nothing particularly surprising; albeit good headline news fodder and a bit troubling. Perhaps a slight feeling of déjà vu for those familiar with Rachel Carson and her book of more than half a century ago, Silent Spring.

To imbibers of energy-boosting, nervous system stimulants like coffee, tea, and the many other caffeinated beverages flooding the marketplace, the idea that a common natural (e.g. botanical) or synthetic chemical might affect behavior is almost a no-brainer, though not necessarily self-evident. Caffeine has gone from fruit fly studies to mosquito control remedy recently. Natural nicotine from tobacco family plants has had almost an opposite trajectory, having once been widely used (e.g. burned as a fumigant) and recommended (e.g. soaking cigarette butts in water) for pest control in agriculture, greenhouses, and organic gardens; and now shunned because of its toxicity to humans and beneficial insects.

Neonicotinoid pesticides, like the widely used imidacloprid, had their design inspiration in natural nicotine molecules; but are safer to humans and other animals. But perhaps not totally without adverse effects, if indeed it is possible to have a substance that is toxic and yet totally safe. The Science reports associate neonicotinoid chemicals like imidacloprid with reduced bumble bee colony size and queen production, as well as lower honey bee survival and foraging success.

Though the scientific data will be subjected to further debate and future studies may confirm or refute the results, Science magazine writer Erik Stokstad, in an accompanying news and analysis, marshaled a stunning statistic to go with the reports: “In the United States alone, 59 million hectares of crops are protected by systemic pesticides. Seeds are treated with these neurotoxins before planting, and the poison suffuses the tissues, pollen, and nectar…”

Nonetheless, as ESA annual meeting habitués may know: genetics, pathogens, parasites, and beekeeper practices apparently also figure into the still mysterious honey bee Colony Collapse Disorder (CCD). Perhaps aptly for a confusingly mysterious disorder, CCD, the acronym for Colony Collapse Disorder, is confusingly the same as the Community College of Denver, charged-coupled devices (like those capturing images in digital cameras), Confraternity of Christian Doctrine, and The Convention Centre Dublin, to mention but a few highly-ranked “CCD” terms in Google.

Those who put their faith in scientific panels, better testing, and more government regulation will be heartened to know that Stokstad says more is on the way in Europe and the USA. Those wanting to do something practical right now to help the honey bees and native bumble bees pollinating their backyards and fields might find more encouragement in some of the presentations coming out of the Entomological Society of America (ESA) annual meetings.

For example, North Carolina State University soil ecologist Yasmin Cardoza, who has shown that earthworm compost produces plants more resistant to caterpillar pests and aphids, more recently told the ESA that amending a cucumber soil (model system) with earthworm compost (vermicompost) helped bumble bees and other native pollinators become heavier, healthier, and more fecund.

Cucumber plants grown in soils amended with earthworm compost had flowers (pollen, nectar) with significantly more protein and a bit more sugar. These more nutritious flowers grown with earthworm compost attracted more bumble bees and native pollinators. Plus the bumble bees had more and larger ovary cells and egg tubes (i.e. an indication of enhanced reproduction), weighed more, and had fewer disease pathogens. Whether earthworm compost can reverse or prevent Colony Collapse or create Colony Expansion would make for an interesting study.

Beekeeping methods also take a hit for exacerbating honey bee problems; and are illustrative of how mites, insect pests and pesticides make for the type of challenging problem that in previous centuries were solved by privately-funded freelance scientists like Louis Pasteur. Pasteur’s freelance entomological endeavors included almost single-handedly rescuing the nineteenth-century silk industry from a similar mysterious collapse of silkworm colonies (insect colonies seem particularly prone to epidemic collapse when you want them; but resistant to collapse when you would rather be rid of them, like termite and fire ant pests). Rene Dubos’ account in his 1950 book, Louis Pasteur Free Lance Of Science, is well worth reading for free on the Internet (pdf, Kindle versions). By early twenty-first century standards, Pasteur seems almost like a Rambo of science, accomplishing with a few assistants what would seem impossible today.

Even if the cause of honey bee colony collapse is still mysterious, like silkworm colony collapse was prior to Pasteur, there is no doubting the reality of the problem.

“In Virginia, the number of managed honey bee colonies have declined by about 50% since the late 1980s due to the introduction of parasitic mites,” Virginia Techie (Blacksburg, VA) Jennifer Williams told the ESA. “Excessive reliance” on fluvalinate (a pyrethroid miticide) and coumaphos (an organophosphate miticide) have “been implicated in numerous problems to honey bees, including impaired reproductive physiology, reduced ability of colonies to raise queens, reduced sperm viability in drones (males), and increased queen failure and loss.” Often these miticides are found in combination with imidacloprid (systemic insecticide), chlorothalonil (broad-spectrum fungicide), and the broad-spectrum antibiotics oxytetracyline and streptomycin used by beekeepers to combat American foulbrood disease in honey bee hives.

Fluvalinate, coumaphos, coumaphos-oxon, and chlorothalonil are found in almost half of North American honey bee colonies at ppb (parts per billion) levels that can be acutely toxic. Combining miticides, pesticides, and antibiotics is a toxic cocktail recipe boosting honey bee mortality 27-50%, according to Williams. In other words, it is a vicious circle in which beekeeping practices (e.g. miticides, antibiotics, substituting sugar water for honey) may have deleterious effects offsetting curative effects on already weakened and mentally confused bees feeding on plants treated with pesticides rather than healthy composts like those being studied by Cardoza.

As if honey bees did not have enough health problems, the small hive beetle (Aethina tumida) is now part of the mix. “In their native range in South Africa, these beetles cause relatively little damage,” Natasha Wright of the University of Arkansas told the ESA. “However, they can be destructive to honey bee colonies in the United States and Australia. The adults and larvae feed on bee brood and bee products. They also cause honey to ferment, which results in unsellable honey. Little is known about the biological control agents.”

“Identifying new mechanisms that support honey bee health will be pivotal to the long-term security and productivity of American agriculture,” Emory University’s Lydia McCormick told the ESA. “Hydrogen peroxide is a potential natural defense/stress response to small hive beetle,” a pest which can devastate a honey bee colony in weeks or months. Not to knock beekeepers, who have enough problems already, but their practice of feeding bees sugar water rather than honey laced with hydrogen peroxide may be part of the problem. Honey bees produce more hydrogen peroxide in their honey to combat stressors like the hive beetle.

“Extremely low concentrations of hydrogen peroxide in sugar-water fed samples may represent a problem in this common method of hive management,” said McCormick. “Honey bees may selectively regulate higher brood honey hydrogen peroxide as a strategic oxidant defense. Given that brood cells contain honey bee larvae, high honey hydrogen peroxide may help protect against pests.” Indeed, small hive beetle survival is lower with hydrogen peroxide in the honey.

Honey containing hydrogen peroxide has been marketed for its antibacterial, wound healing, and skin care potential; and prescriptions for medical-grade honey are a possibility. New Zealand professor Peter Charles Molan published an interesting historical review on honey for wound healing in 2001. Besides hydrogen peroxide, honey may have healing botanical compounds (phytochemicals). Perhaps the bee’s loss is humankind’s medical gain. Though if the bees are lost as pollinators in the process, it is not a sustainable practice in the longer-term.

7 Responses to Earthworm Compost, Medicinal Honey & Fewer Hive Sprays Avert Bee Collapse

  1. itinthenhs says:

    Greeting from over the ocean. excellent blog I must return for more.

    Joelg replies: Thank you, and greetings to the UK. Clever name: Am guessing itinthenhs is IT (Information Technology) in the National Health Service (NHS). Could not find a smartnose.co.uk web site; but you had me intrigued.

  2. Organic Food says:

    Excellent information once again! Thumbs up;)

    Joelg replies: Thank you. Continued good luck with the organic seeds site.

  3. cmos image sensor…

    […]Earthworm Compost, Medicinal Honey & Fewer Hive Sprays Avert Bee Collapse « Biocontrol Beat[…]…

    Joelg replies: I wrote: “CCD, the acronym for Colony Collapse Disorder, is confusingly the same as the Community College of Denver, charged-coupled devices (like those capturing images in digital cameras)…”

    Amidst all the spam (25,000 and counting), a pointer to a truly interesting and useful CCD site popped up. Having written about the usefulness of 24-hour surveillance cameras for investigating honeybees and pesticides; and yesterday having just ordered a new digital camera with a 1/1.63″-CCD image sensor…

    CCD Sensor Resource is worth a look.

  4. nootropic says:

    Hello, i believe that i noticed you visited my web site so i came to “return the favor”.I’m attempting to find issues to improve my web site!I assume its adequate to use a few of your ideas!!

    Joelg replies: You are indeed a clever lad, as you managed to stump my spam filter with your entrepreneurial smarts. “Visualize nootropics as natural vitamins which help the mind,” says your web site. Sounds worth a controlled experiment on honeybees to see if it counteracts the effects of neonicotinoid pesticides.

  5. […] Let the Bed Bugs Bite You or Your MattressEarthworm Compost, Medicinal Honey & Fewer Hive Sprays Avert Bee Collapse #header { background: […]

    Joelg replies: I suppose this is computer-generated trackback. Web site (link above) says: “…This website is created to provide updated information on How to Detect Bed Bugs and enlighten people about what they need to know about How to Detect Bed Bugs…”

    Constructive criticism: 1) get a friend with good English grammar skills to proofread your site; it will be a big benefit. 2) you need to do better fact-checking (e.g. research more of what you write using Google): For example, humans respire carbon dioxide (not carbon monoxide), which is a bed bug attractant. Your idea of respiring into a balloon to trap the gas is interesting, but you would likely need much more CO2 (dry ice is the choice of many entomologists). 3) Keep learning, reading, and improving. An entomology course would go a long way in improving your bed bug detection skills. Bed bugs are a major international problem, and there is definitely a need for better detection methods.

  6. […] COLLAPSE DISORDER (CCD) of honey bees is one of the lingering mysteries of early 21st Century science in more ways than one: from its microbial, immune system and genetic […]

  7. […] If natural nicotine heals honey bees, why are synthetic neonicotinoids so terribly different? Are natural compounds like nicotine inherently more beneficial and their synthetic analogs (e.g. neonicotinoids) inherently bad, perhaps due to subtle differences […]

Leave a comment