Food Sweetener Safely Slays Insects

August 27, 2015

CERTAIN SUGARS CONSIDERED SAFE as sweeteners in the human food supply can double as environmentally-friendly pest remedies, and even make biological control of insects by beneficial fungi more practical for households, farms and gardens. Considering that caffeine from coffee grounds can be used against deadly dengue mosquitoes and that a variety of traditional herbs can blast away bed bugs, insecticidal sugar compounds should come as no surprise. Perhaps the only remedy more surprising is that rain water or simulated rain sprays from hoses or irrigation equipment can safely wash away pests with no toxic pesticide residues to worry about in the environment.

Using sugars directly to slay insects is somewhat unusual. However, sugars are commonly used as attractants, for instance to lure fruit flies, moths or ants to baits and traps both for population control and as a survey method or monitoring tool. California citrus growers have a long history of using sugar sprays as an IPM (integrated pest management) strategy to lure fruit-scarring citrus thrips to organic or botanical formulations of ryania (“from woody stem and root materials of plants of the genus Ryania”) or sabadilla (alkaloids from seeds of a lily bulb, Schoenocaulon officinale). “INTEGRATED PEST MANAGEMENT implies that techniques used to manage one pest species should not disrupt techniques used to manage other pests of the same crop,” wrote J.D. Hare and Joseph Morse in the Journal of Economic Entomology. “In citrus pest management in California, this situation is well illustrated in the choice of pesticides for the management of one major pest, citrus thrips, Scirtothrips citri (Moulton), without disruption of several effective biological control agents of the other major pest, California red scale, Aonidiella aurantii (Maskell).”

That sugars can be lethal to pests and be a source of environmentally-friendly pesticides is not exactly intuitive. “Potential of the non-nutritive sweet alcohol erythritol as a human-safe insecticide” was the strangely intriguing title of Drexel University’s Sean O’Donnell’s presentation at the Entomological Society of America (ESA) annual meeting. Many of the details were previously published in PLoS ONE, an open access journal, and in part because of the origins of the research in a grade school science project by one of the researcher’s sons, aspects of the story have been widely reported in various media. “Erythritol is a zero-calorie sweetener found in fruits and fermented foods,” summarized Lauren Wolf in Chemical & Engineering News, and “is Generally Recognized As Safe by the Food & Drug Administration and has been approved as a food additive around the globe.”

“Many pesticides in current use are synthetic molecules such as organochlorine and organophosphate compounds,” and “suffer drawbacks including high production costs, concern over environmental sustainability, harmful effects on human health, targeting non-intended insect species, and the evolution of resistance among insect populations,” write the researchers in PLoS ONE. “Erythritol, a non-nutritive sugar alcohol, was toxic to the fruit fly Drosophila melanogaster. Ingested erythritol decreased fruit fly longevity in a dose-dependent manner, and erythritol was ingested by flies that had free access to control (sucrose) foods in choice and CAFE (capillary feeding assays) studies…

“We initially compared the effects of adding five different non-nutritive sugar substitutes (Truvia, Equal, Splenda, Sweet’N Low, and PureVia,” wrote the researchers in PLoS ONE. “Adult flies raised on food containing Truvia showed a significant reduction in longevity…We noted that adult flies raised on food containing Truvia displayed aberrant motor control prior to death. We therefore assayed motor reflex behavior through climbing assays…Taken together with our longevity studies, these data suggested some component of the non-nutritive sweetener Truvia was toxic to adult Drosophila melanogster, affecting both motor function and longevity of this insect…

“Our initial analysis of sweeteners included two sweeteners that contained extracts from the stevia plant, Truvia and Purevia. While adult flies raised on food containing Truvia showed a significant decrease in longevity compared to controls, this was not the case for flies raised on Purevia. These data suggest stevia plant extract was not the toxic element in these sweeteners. Purevia contains dextrose as a bulk component, while Truvia contains erythritol as a bulk component…To determine if erythritol was the toxic component of Truvia, we repeated our longevity studies on food containing equal weight/volume (0.0952 g/ml) of nutritive sugar control sucrose, and non-nutritive sweeteners Truvia, Purevia, and erythritol. We assured the flies were successfully eating the foods containing these sweeteners through dye labelling the food with a non-absorbed blue dye (blue food), and visual confirmation of blue food present in fly abdomens and proboscises daily…The average percentage of blue abdomens throughout the study were 97.46%.”

“These data confirm all treatment foods (including Truvia and erythritol treatments) were consumed by adult flies, and suggest mortality was not due to food avoidance and starvation…A large body of literature has shown that erythritol consumption by humans is very well tolerated, and, indeed, large amounts of both erythritol and Truvia are being consumed by humans every day throughout the world. Taken together, our data set the stage for investigating this compound as a novel, effective, and human safe approach for insect pest control. We suggest targeted bait presentations to fruit crop and urban insect pests are particularly promising.”

Interestingly, a few decades ago UK researchers found that the sweeteners (sugar alcohols; polyols) erythritol, glycerol and trehalose rendered more effective several insect biocontrol fungi, Beauveria bassiana, Metarhizium anisopliae and Paecilomyces farinosus. These insect-killing fungi need a relative humidity (RH) near 100% for germination of their conidia (seed-like propagules). “Conidia with higher intracellular concentrations of glycerol and erythritol germinated both more quickly and at lower water activity,” wrote UK researchers J.E. Hallsworth and N. Magan in the journal Microbiology. “This study shows for the first time that manipulating polyol content can extend the range of water availability over which fungal propagules can germinate. Physiological manipulation of conidia may improve biological control of insect pests in the field…Although fungal pathogens have been used to control insect pests for more than 100 years, pest control has been inadequate because high water availability is required for fungal germination.”

Curiously, erythritol and glycerol, besides being sweetening substances, also function as antifreeze compounds. Certain Antarctic midges, known as extremeophiles for living in an ultra-cold habitat, ingest and sequester erythritol from their food plants; and as antifreeze it protects the adult flies from freezing. Indeed, many mysteries remain. Besides being found in green plants like stevia and in lower amounts in fruits, erythritol is found in certain mushrooms, lichens and algae. Human and animal blood and tissues apparently have low endogenous levels of erythritol; and erythritol is a yeast fermentation product (hence in sake, beer, wine). In human medicine, erythritol has been used for coronary vasodilation and treating hypertension; and according to Japanese microbiologists, erythritol ingestion may mean fewer dental cavities (caries) than sucrose sugar.


Natural vs Synthetic Repellents

March 30, 2010

SYNTHETIC OR NATURAL? Which is best? Since the 1950s the synthetic chemical DEET (N, N-diethyl-m-toluamide) has been the standard to which all other mosquito, tick and biting fly repellents have been compared. DEET is still the standard of comparison, but the long search for natural or organic repellents is finally yielding a number of potential alternatives, some from the plant world and others from such unlikely places as human sweat.

The progress in besting DEET has been so stunning that the Entomological Society of America (ESA) presented a four-hour symposium with a dozen 20-minute talks, Celebrating the Success of Global Insect Repellent Science Research. Habitues of the ESA know that in the world view of a female mosquito, humans are little more than scented apes put on Earth to be protein-rich blood meals to begat new generations of what we call vermin and they consider kin.

Sweat, heat, and carbon dioxide, that greenhouse gas that humans respire into the atmosphere with every exhaled breath, tip off mosquitoes and other bloodsuckers that the human food wagon has arrived. Actually, that’s putting it a bit crudely. Mosquitoes are actually connoisseurs, and sniff out humans like a gourmet would a fine wine. To be even more accurate, females are the true connoisseurs and gourmands, the bloodsucking vampire sex of the mosquito world. Male mosquitoes are true flower children, pacifists abhorring the bloodsucking life and mostly passing the time pollinating plants.

Longtime scholars of mosquito feeding habits on humans, like Willem Takken at Wageningen University in The Netherlands, have tallied 300 to 350 compounds mosquitoes can use to identify humans. About 60 of these odors are common to every person, and the rest give each human a slightly different scent. Thus, we oftentimes remember a person by their distinctive smell. Elegant experimental techniques like gene silencing and transferring mosquito olfactory genes to fruit flies allows the mapping of mosquito odor preferences. Some mosquito species, such as the malaria-vector Anopheles gambiae, can zero right in on humans. Other mosquito species may bypass humans in favor of cows, livestock or other animal species.

From a practical standpoint, if diseases like malaria, dengue and yellow fever are not a concern and you need protection for only an hour or two, one of the many commercial botanical repellents is likely to suffice as an alternative to DEET. Lemon eucalyptus products, including Quwenling from China, get high marks from the CDC. Daniel Strickman at the USDA-ARS in Beltsville, MD, and others have compiled long lists of botanicals good for about an hour of repellency, including: clove, geranium (geraniol), citronella, celery, lemon, lime, neem, pyrethrum, fringed rue, patchouli, pennyroyal, soybean, thyme, niaouli (Melaleuca viridiflora), makaen (Zanthoxylum limonella), Mexican tea (Chenopodium ambrosioides), Labrador tea (Ledum groenlandicum), and lily-of-the-valley.

However, natural or organic does not automatically mean safe or lacking in toxicity. Natural compounds, like synthetics, can also be sources of skin irritation, toxicity, and carcinogenicity. Even lemon eucalyptus oil can be an eye irritant. And as some herbal tea drinkers have learned the hard way (as is documented in the medical journals), the active ingredients in pennyroyal, violets and other botanicals can be dangerously toxic in too high a dose or with prolonged use.

The U.S. EPA can give what is known in legalese as FIFRA 25(b) Exemptions (Minimum Risk Pesticides), the USDA’s Strickland told the ESA repellent symposium. This allows some natural compound active ingredients to be used as repellents without testing. Examples include cedar oil (from eastern red cedar), citronella, garlic, geranium, lemongrass, peppermint, soybean oil and thyme. The International Fragrance Association investigates active ingredients to avoid lawsuits over cosmetics, though even this is not a guarantee against allergic reactions.

In short, caution is the watchword. Try a little bit first, and to be really safe use long sleeves and pants so that minimal repellent directly contacts the skin (as both natural and synthetic chemicals may penetrate the skin and enter the bloodstream).

Joel Coats’ lab at the University of Iowa provided the ESA symposium with a glimpse of the future. Coats’ lab is well-known in entomological circles for its pioneering work with naturally occurring monoterpene and sesquiterpene chemicals in plants such as catnip (Nepeta cataria), Osage orange (Maclura pomifera), West Indian sandalwood (Amyris balsamifera), and Siam-wood (Fokenia hodginsii). In short, the chemicals known as monoterpenes provide a broad spatial repellency, and the “oxygenated sesquiterpenes” provide contact repellency. And a mixture of the two provides both modes of action and the best repellency. You will probably want to wait for the testing to be completed and commercial products to be formulated.

But back to the question of which is best, natural or synthetic. Some of the best natural compounds, and there are too many to list, can outperform DEET. Even some new synthetics can outperform DEET in some ways. If you have a job that keeps you in the field and exposed to mosquitoes, biting flies and ticks for 12 or 24 hours at a time, then you need some heavy-duty, long-lasting protection. Indeed, that is the holy grail for organizations like the U.S. Army.

Life may have seemed simpler in the 1960s when Mr. Robinson told Dustin Hoffman in the movie The Graduate that the future was in plastics. Quantitative structure-activity relationships (QSAR) is the future in 2010, say Coats and his graduate student Gretchen Paluch. They forsee a leapfrogging future where natural repellents better than DEET lead to new synthetic spinoffs of nature’s best molecules better than anything yet known.

They believe that patchouli, cedar oil and other natural compounds can (via QSAR) provide the skeleton for designing new repellent molecules. However, it may not be so simple, as a fine ecological balance has evolved in nature. Though it may seem contradictory, even so-called repellent plants like catnip, which is famous for repellent molecules like neptalactone, also contain attractant molecules. Possibly the best repellents will also contain elements of attraction. But that is another story for another time.