Natural vs Synthetic Repellents

March 30, 2010

SYNTHETIC OR NATURAL? Which is best? Since the 1950s the synthetic chemical DEET (N, N-diethyl-m-toluamide) has been the standard to which all other mosquito, tick and biting fly repellents have been compared. DEET is still the standard of comparison, but the long search for natural or organic repellents is finally yielding a number of potential alternatives, some from the plant world and others from such unlikely places as human sweat.

The progress in besting DEET has been so stunning that the Entomological Society of America (ESA) presented a four-hour symposium with a dozen 20-minute talks, Celebrating the Success of Global Insect Repellent Science Research. Habitues of the ESA know that in the world view of a female mosquito, humans are little more than scented apes put on Earth to be protein-rich blood meals to begat new generations of what we call vermin and they consider kin.

Sweat, heat, and carbon dioxide, that greenhouse gas that humans respire into the atmosphere with every exhaled breath, tip off mosquitoes and other bloodsuckers that the human food wagon has arrived. Actually, that’s putting it a bit crudely. Mosquitoes are actually connoisseurs, and sniff out humans like a gourmet would a fine wine. To be even more accurate, females are the true connoisseurs and gourmands, the bloodsucking vampire sex of the mosquito world. Male mosquitoes are true flower children, pacifists abhorring the bloodsucking life and mostly passing the time pollinating plants.

Longtime scholars of mosquito feeding habits on humans, like Willem Takken at Wageningen University in The Netherlands, have tallied 300 to 350 compounds mosquitoes can use to identify humans. About 60 of these odors are common to every person, and the rest give each human a slightly different scent. Thus, we oftentimes remember a person by their distinctive smell. Elegant experimental techniques like gene silencing and transferring mosquito olfactory genes to fruit flies allows the mapping of mosquito odor preferences. Some mosquito species, such as the malaria-vector Anopheles gambiae, can zero right in on humans. Other mosquito species may bypass humans in favor of cows, livestock or other animal species.

From a practical standpoint, if diseases like malaria, dengue and yellow fever are not a concern and you need protection for only an hour or two, one of the many commercial botanical repellents is likely to suffice as an alternative to DEET. Lemon eucalyptus products, including Quwenling from China, get high marks from the CDC. Daniel Strickman at the USDA-ARS in Beltsville, MD, and others have compiled long lists of botanicals good for about an hour of repellency, including: clove, geranium (geraniol), citronella, celery, lemon, lime, neem, pyrethrum, fringed rue, patchouli, pennyroyal, soybean, thyme, niaouli (Melaleuca viridiflora), makaen (Zanthoxylum limonella), Mexican tea (Chenopodium ambrosioides), Labrador tea (Ledum groenlandicum), and lily-of-the-valley.

However, natural or organic does not automatically mean safe or lacking in toxicity. Natural compounds, like synthetics, can also be sources of skin irritation, toxicity, and carcinogenicity. Even lemon eucalyptus oil can be an eye irritant. And as some herbal tea drinkers have learned the hard way (as is documented in the medical journals), the active ingredients in pennyroyal, violets and other botanicals can be dangerously toxic in too high a dose or with prolonged use.

The U.S. EPA can give what is known in legalese as FIFRA 25(b) Exemptions (Minimum Risk Pesticides), the USDA’s Strickland told the ESA repellent symposium. This allows some natural compound active ingredients to be used as repellents without testing. Examples include cedar oil (from eastern red cedar), citronella, garlic, geranium, lemongrass, peppermint, soybean oil and thyme. The International Fragrance Association investigates active ingredients to avoid lawsuits over cosmetics, though even this is not a guarantee against allergic reactions.

In short, caution is the watchword. Try a little bit first, and to be really safe use long sleeves and pants so that minimal repellent directly contacts the skin (as both natural and synthetic chemicals may penetrate the skin and enter the bloodstream).

Joel Coats’ lab at the University of Iowa provided the ESA symposium with a glimpse of the future. Coats’ lab is well-known in entomological circles for its pioneering work with naturally occurring monoterpene and sesquiterpene chemicals in plants such as catnip (Nepeta cataria), Osage orange (Maclura pomifera), West Indian sandalwood (Amyris balsamifera), and Siam-wood (Fokenia hodginsii). In short, the chemicals known as monoterpenes provide a broad spatial repellency, and the “oxygenated sesquiterpenes” provide contact repellency. And a mixture of the two provides both modes of action and the best repellency. You will probably want to wait for the testing to be completed and commercial products to be formulated.

But back to the question of which is best, natural or synthetic. Some of the best natural compounds, and there are too many to list, can outperform DEET. Even some new synthetics can outperform DEET in some ways. If you have a job that keeps you in the field and exposed to mosquitoes, biting flies and ticks for 12 or 24 hours at a time, then you need some heavy-duty, long-lasting protection. Indeed, that is the holy grail for organizations like the U.S. Army.

Life may have seemed simpler in the 1960s when Mr. Robinson told Dustin Hoffman in the movie The Graduate that the future was in plastics. Quantitative structure-activity relationships (QSAR) is the future in 2010, say Coats and his graduate student Gretchen Paluch. They forsee a leapfrogging future where natural repellents better than DEET lead to new synthetic spinoffs of nature’s best molecules better than anything yet known.

They believe that patchouli, cedar oil and other natural compounds can (via QSAR) provide the skeleton for designing new repellent molecules. However, it may not be so simple, as a fine ecological balance has evolved in nature. Though it may seem contradictory, even so-called repellent plants like catnip, which is famous for repellent molecules like neptalactone, also contain attractant molecules. Possibly the best repellents will also contain elements of attraction. But that is another story for another time.