Insect Perceptions, Irrelevant or Important

February 23, 2016

“IT WAS THE BUTTERFLIES, my people say, who brought the first human babies to their feet,” writes Canadian Richard Wagamese in “Butterflies Teachings,” an essay touching on “what’s called Enendamowin, or Ojibway worldview” in his brilliant collection, One Native Life. “Before that, the New Ones sat in innocence beneath a tree, watching the world around them with wonder. But Creator had planned more for them. Their destiny called for them to move throughout the world. These human babies were meant to walk upon their two legs, and as long as they sat under that tree their destiny could not be fulfilled…The air seemed to tremble with butterflies. The human babies were entranced. Each time they tried to snare a handful of colour, the cloud drifted away. They stretched their arms higher. They thrust out their hands. But it was to no avail. When the butterflies danced just out of reach a final time, the New Ones lurched to their feet and raced after them across the meadow. The Animal People celebrated quietly, then returned to their dens and burrows and nests. The human babies never caught those butterflies, but they kept on running, right into the face of their destiny…”

Quite a different worldview from Prague and Eastern Europe, where Franz Kafka’s famous novel Metamorphosis begins: “As Gregor Samsa awoke one morning from uneasy dreams he found himself transformed in his bed into a gigantic insect.” According to the “wall notes” in the exhibit “Disguise: Masks & Global African Art” at the Fowler Museum at UCLA, Kafka’s words inspired South Africa artist Walter Oltmann. Among neon masks, dancing mask videos and sculptured African animals wearing masks are Oltmann’s large anodized aluminum and brass wire caterpillars in the midst of “transformation and change” (metamorphosis) and fashion sketches titled “Beetles & Suits.” The suit coats are gracefully curving, shell-like beetle elytra (outer wing covers) fashionably topped off with the latest antennae, and looking both business-like and sci-fi out of Star Wars or Star Trek at the same time. I can easily imagine a cell phone age makeover of The Beatles’ Sgt. Pepper’s Lonely Hearts Club Band regalia and long hair with “beetle suits” and high-fashion antennae. Perhaps too much entomology affects the psyche. Oltmann writes that “spending an inordinate amount of time on making something that is usually considered insignificant like an insect, does make us look differently at them.” He says it “speaks of neither this nor that,” but I’m not so sure.

Insect observations appear in haiku by Japanese master Matsuo Basho, whom I think of as the late 1600s slightly more refined counterpart of 20th century Los Angeles poet Charles Bukowski, who was too busy with “other interests” to notice beetles, flies, mosquitoes and roadside weeds. In Moon Woke Me Up Nine Times: Selected Haiku of Basho, translator David Young writes: “Odd numbers predominate; a dance is occurring, and each third of the poem is a turn, a gesture, a refining or revelation… The poem seems to end almost as soon as it has begun, a small flash of lightning…A more literal version of the haiku cited (below) would be something like: What can save your life? / one leaf, with an insect / sleeping on its journey… the journey, which refers to a Chinese story that Basho’s readers would know but that is largely meaningless to English readers…‘Basho mash-ups,’ I have sometimes called my versions”:

One insect
asleep on a leaf
can save your life

Perhaps Basho was thinking of medicinal silkworms slumbering on mulberry leaves, or perhaps his mind was journeying among high mountains where ghost moths metamorphose with fungi into plant-animal hybrids that have been used in Asian medicine for centuries. David Young says about haiku: “They love to startle, first the writer and then the reader. As though a hummingbird were to land suddenly on your resting arm. It is the way the world so often surprises us.”

A haiku by Los Angeleno Mark Jun Poulos, whose observation of the seemingly mundane urban habitat nagged at me long after I thought I had dismissed its ordinary elements from consciousness:

restroom sink-—
ladybug cooling off
in a drop of water

What nagged at me was water, a vital ingredient of life, which as hard sprays of rain washes away pesky mites and aphids that are ladybug prey. Water (H2O) is also a missing ingredient in most ecological studies of interplanting, a habitat diversity strategy designed to boost populations of lady beetles and other beneficial insects providing natural pest control. Australian grape vineyards and California lettuce fields have had some success interplanting blooming rows of sweet alyssum to provide pollen, nectar and alternative prey for ladybugs, lacewings, hover flies and other beneficial species consuming aphids and other pests. Sweet alyssum is also host to micro-wasps helping Michigan asparagus growers by parasitizing leafmining pest insects, Amanda Buchanan of Michigan State University reported at the Entomological Society of America (ESA) annual meeting in Minneapolis. But if habitats are missing water, then perhaps lady beetles, which do not puncture plants to drink fluid, will leave to find restroom sinks, puddles or other water sources. Perhaps, like providing water bowls for pets, something similar needs to be researched as part of biological control habitat alternatives. Though I would draw the line at alcoholic drinks, except perhaps beer in snail and slug traps. Another urban haiku observation by Mark Jun Poulos:

sultry afternoon—
wasp hovers over a whiskey bottle
held by a drunk bum

Ethanol or ethyl alcohol, by percentage the main chemical component of distilled whiskey, should not be abused, nor perhaps should it be so heavily subsidized as a biofuel, as that incentive exacerbates huge landscape changes measurable as reduced biodiversity. At Synergies in Science, a rare Minneapolis gathering of the ESA, American Society of Agronomy, Crop Science Society of America and Soil Science Society of America, the diminishing biodiversity of a Midwest USA with 21% less wheat, 16% less hay and much more GMO corn to distill into ethanol motor fuels was as hard to ignore as a drunk with a whiskey bottle on an urban bench. Jonathan Lundgren of the USDA-ARS in Brookings, South Dakota said we need to get away from our “very pest-centric approach” and adopt a more holistic biological network approach. Instead of a Midwest saturated with pesticides to grow GMO corn to distill into fuel tank ethanol, something as seemingly simple as adding biodiversity via cover crops amongst the corn rows could produce enough soil biocontrol of corn rootworm to eliminate wasteful neonicotinoid seed treatments whose honey bee and beneficial insect friendliness is being hotly debated. Karen Friley of Kentucky State University reported at the ESA that something as seemingly simple as native plant border rows around sweet corn fields “provide microclimates in the form of moderated temperatures, which offer shelter” for numerous natural enemies controlling corn pests.

Curiously enough, ethanol (alcohol) like that in whiskey bottles and vehicle fuels also attracts pine beetles and ambrosia beetles considered destructive forest, landscape, street tree and nursery pests. Perhaps more curiously, the very trees being attacked are producing the ethanol and releasing it into the atmosphere when stressed (e.g. by drought or flood), decaying or dying. Trees may look perfectly healthy on the outside, but inside the tree is another story, because ethanol emissions are signs of sickliness and ill health. Chemical ecologist Christopher Ranger of the USDA-ARS in Wooster, Ohio said it is a real problem, for example, when nursery seedlings are used to replant spruce forests or with dogwoods, magnolias, pines, etc. in nurseries, backyards, along streets, etc. It is definitely ecology, as the ethanol is luring in the beetles to help “recycle” the trees back into the soil as nutrients.

I liked Ranger’s reasoning: Find the tree equivalent of driver breathalyzer tests as a beetle-attack early warning system. SCRAM wrist bracelets worn by offenders for transdermal drug and alcohol detection were tested, but were not sensitive enough; taking a week to detect low tree ethanol exhalations, whereas beetles detect a few parts per million of alcohol and get to trees almost on day one. The solution was a portable ethanol monitoring device with a detector tube and a plunger to pull in air samples; developed using Japan’s Gas Tech industrial gas leak detection technology for quick detection of “inebriated” trees.

So, which is more startling and surprising: art, haiku or entomology?

Strange brew: September 17, 2015 daylight turning to dark, caught in one of those infamous, almost proverbial L.A. traffic jams at a freeway underpass on Church Lane transitioning from Sunset Blvd to Sepulveda Pass on my way past the Getty Museum to Mulholland Drive, listening to the Moody Blues Live at Red Rocks, going nowhere. Haiku and fireflies flashing internally, and externally the blinking side turn lites and red back brake lights suddenly and surprisingly metmorphosed into synchronous fireflies, albeit of a mechanical or robotic nature:

Tail and Turn Lights
Flashing like Synchronous Fireflies
In the Los Angeles Traffic Jam

 


Native Bees Pick Up Pollination Slack (Combating Colony Collapse)

May 3, 2012

HONEY BEE COLONY COLLAPSE Disorder (CCD) is a murky headline catch phrase, a scientific-sounding term that is almost a euphemism, to describe a population decline. In other words, there are fewer honey bees than there used to be, which is bad for agricultural crops dependent upon these domesticated insects for pollination.

Why a population decline is called a “disorder” is a bit beyond me, though it sounds almost clinical or medical. Perhaps that is the point; and calling it a disorder makes it a more respectable object of study and aids in obtaining funding and public support for research and finding a remedy. The declining human populations in Russia, Italy, Germany, Japan and other developed countries are not called a disorder; which perhaps implies an underlying value judgment. Might be nice to discover a Bed Bug Colony Collapse Disorder (BBCCD) to give cause for celebration. Though the acronym BBCCD in the Google search engine would confusingly yield CDs from the British Broadcasting Corporation (BBC).

Wikipedia makes it sounds like honey bees are being kidnapped: “Colony collapse disorder (CCD) is a phenomenon in which worker bees from a beehive or European honey bee colony abruptly disappear. While such disappearances have occurred throughout the history of apiculture, the term colony collapse disorder was first applied to a drastic rise in the number of disappearances of Western honey bee colonies in North America in late 2006…” If such occurrences have been happening throughout history, then the “disorder” sounds more like normality. In any case, times are tougher for those relying upon domesticated honey bees for crop pollination.

The interesting flip side of honey bee colony collapse disorder is the almost metaphorical return of the natives: Really a rediscovery and new appreciation of overlooked native pollinators like North American squash bees, digger bees, miner bees, sweat bees, bumble bees, and syrphid flies.

Whether you call it a disorder or a population decline: Nature abhors a vacuum or an empty ecological niche, like an absence or paucity of pollinating honey bees in a flowering agricultural ecosystem. Niches tend to get filled in nature, though the process may take years. With fewer honey bees (Apis mellifera is an introduced species in the Americas) in the fields, native bees hitherto ignored or overlooked are taking over the pollination chores on certain crops, according to research presented at Entomological Society of America (ESA) meetings.

“Nearly 4,000 species of native bees are found in North America,” said the University of Kentucky’s Amanda Skidmore. Integrated Pollination Management (IPM) or Integrated Crop Pollination, jargon phrases that sometimes popup at meetings, refers to managing crop ecosystems as habitats for native pollinators.

“In order to best utilize bees as pollination service providers, agro-ecosystems must be managed to attract and sustain them based on their natural history biological requirements,” Skidmore told the ESA. These habitat requirements include “energy (nectar), larval food proteins (pollen), and protected nesting sites (i.e. untilled earth, nesting boxes, dead plant matter).”

Native long-horned bees (Melissodes bimaculata) take up some of the slack from depleted honey bee populations in Kentucky by pollinating squash, melon and vegetable crops. Sweet alyssum (white-flowered variety), a flower interplanted in agricultural crops to promote biological control of pests by natural enemies, was heavily favored by the native pollinators; along with bee balm (Monarda didyma) and wood sage (Teucrium canadense). The idea is to plant a succession of flowering resources, including native wildflowers, shrubs and trees, to sustain native pollinators from very early season to late season. Research on habitat plantings is on-going.

Native North American sweat bees (Halictidae) and digger or mining bees (Andrenidae) are abundant pollinators of Michigan’s important blueberry crop in some locales, Michigan State University researcher Rufus Isaacs told the ESA. Nearby meadows “grow” sweat bee populations that move into blueberries to provide pollination services. Well-drained soils mean more nesting habitat for digger or mining bees that also pollinate blueberries. Several dozen wild native annual and perennial plants with varied bloom periods are being test-grown near Michigan blueberries to determine which best boost native bee populations and reduce the need for honey bee pollination.

Similar strategies for adding habitat for native pollinators are also being researched in crops as diverse as apples, cherries, squash and watermelons in regions as far-flung as Florida and California.


Interplanting, Ancient Roots

November 26, 2009

INTERPLANTING IS ANCIENT. It predates agriculture. Interplanting even predates the dinosaur, going back to the first plants growing side-by-side on planet EARTH. Indeed, interplanting is a natural ecological phenomena, existing much like the stars in the night sky.

On farms and gardens, interplanting is sometimes called companion planting. Ancient farmers observed natural interplanting or companion planting in their fields, along with winds, rains, heat, cold, insects, solstices and lunar and planetary movements across the sky. Today, much of the natural interplants occurring in farm fields and gardens is derisively referred to as weed growth (though major crops like maize and wheat still contain the genes of weed ancestors). Indeed, it is a value judgment when native wildflowers like prairie sunflowers are labeled weeds and destroyed by cultivation or herbicides.

In the U.S. state of Tennessee in the 1930s, during America’s Great Depression, the insect factor in interplanting was first subjected to scientific experimentation by an entomologist named Marcovitch. Writing in a 1935 issue of the Journal of Economic Entomology, a still extant publication of the Entomological Society of America (ESA), Marcovitch traced his interest to experiment station reports by other entomologists. Much like the ancient farmers who based planting decisions on empirical and astronomical observations, an entomologist writing in 1906 “advocated for the control of the melon louse the planting of mustard or kale or rape around the melon field. The lady beetles would thus become plentiful after feeding on the cabbage aphids and be ready to attack the melon louse.”

Marcovitch’s penchant to begin the modern era of experimental companion planting was also inspired by a 1929 entomological report that woodlots fostered populations of aphid-eating syrphid flies that destroyed aphids in garden peas. In contrast, pea fields away from woodlots were devastated by aphids and sometimes yielded no crop. Figuring that aphid damage to vegetables was a consequence of an absence of biological control by aphid natural enemies, Marcovitch began a series of scientific interplanting experiments to boost natural biological control in crop fields.

Tennessee turnip strips planted in March yielded aphid natural enemies like lady beetles and small parasitic wasps that migrated later into adjacent strips of peas, beans, corn, okra, cotton, cucumbers and watermelons. Aphid populations declined in the main crops, thanks to the adjacent natural enemy-laden turnip rows. In contrast, “control” watermelon plots lacking adjacent turnip rows to provide natural enemies were destroyed by aphids early in the season.

Since Marcovitch’s pioneering 1935 report in the Journal of Economic Entomology, books have been written on interplanting experiments to increase natural biological control in crops.


Beneficials Sweet on Alyssum

July 22, 2009

INTERPLANTING SWEET alyssum (Lobularia maritima) is an excellent way to promote natural biocontrol of a wide array of landscape, orchard, field and garden pests like aphids, stinkbugs, leaf and fruit worm caterpillars, etc. Companion planting has ancient roots, figuring in the writings of the Greek Theophrastus in 300 B.C. and the Roman Pliny (Plinius Secundus) in 1 A.D. Though popular in organic gardening and farming, floral interplants escaped serious scientific scrutiny until recent years.

Australia’s wine grape growers are among those who take their sweet alyssum companion plantings very seriously. At Australia’s EH Graham Centre for Agricultural Innovation ecological engineers and entomologists like Geoff Gurr of Charles Sturt University are fine-tuning companion planting. Firstly, you need to choose companion interplants that supply nectar, shelter and other resources to beneficial predators and parasites but not to pest species.

The Aussies focused their scientific studies on a Trichogramma species parasitizing and destroying the eggs of the lightbrown apple moth (Epiphyas postvittana), a key pest of Australian vineyards. In “clean” vineyards where weeds and ground covers are destroyed by herbicides or cultivation, biocontrol species like Trichogramma may survive as few as two days, versus three days with water only and up to 20 days with sweet alyssum (the best ground cover tested). Alyssum flowers doubled the number of moth eggs parasitized over a 10 day period. In contrast, when the alyssum plants were deflowered the Trichogramma perished and there was little biocontrol.

But there is more to the story. “Not only is plant species important, but the cultivar within the species is critical,” Gurr told an Entomological Society of America annual meeting. For example, Trichogramma survive far longer on white-flowered alyssum cultivars compared to purple and other colors. Alyssum also boosted predators without aiding the apple moths, which was not the case for every ground cover interplant tested.

Most landscape and cropping systems have not been subjected to the same level of ecological and laboratory investigation as Australian wine grapes. Thus, Rincon-Vitova and other insectaries selling beneficial insects generally recommend blends of flowering plants supplying floral nectar throughout the season.