Herbal Oils Blast Bed Bugs

March 28, 2015

HERBAL OILS such as NEEM can reduce bed bug populations when integrated with other pest control technologies such as traps. As desperation hits with more bed bug populations resistant to more conventional synthetic pesticides, more herb and essential oil formulations and fumigations, as well as silicon dioxide-based gels and dusts such as diatomaceous earth, are being integrated with other bed bug remedies such as clutter reduction and heat fumigation.

Those in thrall to chemical industry protocols adhere to the standard that a remedy must kill 95% in laboratory tests. But it is most often a hypocritical standard, as over time bed bugs are almost guaranteed to become genetically selected for resistance to widely used synthetic pesticides. According to Virginia Tech researchers: “A frightening resurgence of bed bug infestations has occurred over the last 10 years in the U.S. and current chemical methods have been inadequate for controlling this pest due to widespread insecticide resistance…While DDT was initially effective for bed bug control, resistance to the cyclodienes was well documented among different bed bug populations by 1958…bed bugs had developed resistance to organophosphate insecticides, including malathion by the 1960s…While there have been many hypotheses regarding the cause of the bed bug resurgence, the cause is at least partially explained by bed bug resistance to insecticides, in this case, those in the pyrethroid class,” including deltamethrin resistance in New York City bed bugs.

To that conclusion, I would add “over-reliance on synthetic chemical pesticides” to the exclusion of designing habitations to be inhospitable to bed bugs and alternative control methods. Oddly enough, herbal remedies not killing 95% are often subject to persecutory calls of marketplace banishment by the EPA, FDA, FTC or one of the myriad other USA.gov regulatory bureaucracies. An Alternative in the Internet age is letting people decide for themselves via Internet search engines before buying. To some extent, government regulation of herbal pest control efficacy is unnecessary when scientific test results can be posted on the Internet and debated.

An integrative approach can make excellent use of herbal remedies providing perhaps 40% or 60% bed bug reduction; in conjunction with heat treatments, sharp silicon dioxide crystals and other remedies that collectively might add another 30%, 40% or 50% bed bug reduction. It’s all mathematics, which many people hate; but nonetheless a 60% bed bug reduction from an herbal remedy combined with a 40% reduction from clutter reduction, heat fumigation or traps can easily equal over 95% control (the laboratory standard adhered to by those one-trick chemical ponies sometimes called “nozzle heads”).

In other words, herbal oils and other alternative treatments can leverage themselves when intelligently combined with other pest control methods such as heat, clutter reduction and traps. That should be intuitive, but it runs counter to the entomology training of the average PhD in the USA. The late “Professor (Robert) van den Bosch of the University of California was one of the developers of Integrated Pest Management” (IPM) and an advocate of biological controls; and he made the case for a multi-faceted approach to cotton and food crop pests long ago in books like The Pesticide Conspiracy (University of California Press).

Bed bugs and the urban environment of hotels, apartments, cracks, crevices, mattresses, trains, buses, backpacks and luggage of course present a different set of problems than a homogeneous field of crops or a laboratory spray arena. But you be the judge of whether herbal fumigations work against bed bugs: At the Entomological Society of America annual meeting, Korean researcher Jun-Ran Kim (Rural Develop Admin, Suwon-si Gyeonggi-do, South Korea) compared 120 herbal or botanical essential oils to the best conventional pesticides for controlling insecticide-susceptible and insecticide-resistant adult bed bugs hiding in protected places (as bed bugs do; e.g. cracks, crevices, inside electrical sockets).

Kim singled out two essential oils, those from peppermint (Mentha piperita) and myrtle (Myrtus communis) plants, as most effective and worth further development as bed bug fumigants. So, should the headline read: “Essential Oils a Failure as Bed Bug Fumigants,” as 118 of 120 essential oils did not make the cut. Indeed, fewer than 2% of the botanical oils tested, peppermint and myrtle, were singled out as potential bed bug fumigants. Or should the headline read: “Essential Oils Effective Bed Bug Fumigants,” or “Peppermint and Myrtle Oils Prove Essential Oils Can Work as Bed Bug Fumigants.”

Rue, an ancient herb, needs to be tested against bed bugs. Natural products researchers report: “An infusion of Ruta chalepensis leaves rubbed onto skin has been purported to be repellent to mosquitoes and other insects by farmers and shepherds in rural and mountainous areas of Marche and Latium, Central Italy. In the same Italian countryside, Ruta graveolens leaves were set under the bed to repel bugs and mice (Guarrera 1999). A decoction of Ruta species also has been used topically against scabies, lice, and fleas, to repel insects and to treat intestinal worms in livestock.”

Intriguingly, rather than following up on rue under the bed to fight bed bugs, Italian researchers veered off in another direction: Rue, as a sustainable weed control alternative for corn field weeds such as purslane and pigweed: “Poisonous plants are neglected sources of natural herbicides. An infusion of such a plant rue (Ruta graveolens L.) was tested…rue infusion (100 g/l) and its isolated allelochemicals…open up a promising avenue in the search of natural herbicides.”

Other researchers envision the disease-fighting properties of herbs such as rue and powders such as sodium bicarbonate (baking soda or bicarbonate of soda) being harnessed as alternatives to synthetic fungicides. Indeed, in organic and sustainable conventional farming, rue “at low rates…may lessen the onset of fungicide resistance” against powdery mildew, brown spot and other plant diseases in diverse crops, including strawberries.

Italian researcher Giovanni Aliottal and colleagues in a paper titled “Historical Examples of Allelopathy and Ethnobotany from the Mediterranean Region,” write: “Ruta graveolens L. (Rutaceae), or common rue, originating in Southern Europe, is an evergreen shrub with bluish-green leaves that emits a powerful odour and has a bitter taste. The plant is cited in the ancient herbals and has deep roots in folklore, alchemy and even demonology. Rue has been regarded from the earliest time as successful in warding off contagion and preventing the attacks of fleas and other noxious insects. The name rue derives from the Greek “reuo” (= to set free), because the plant is efficacious in various diseases. Rue was the chief ingredient of the famous antidote to poison used by Mithridates. It was also known to produce erythema and pustular eruptions on human skin. Many remedies containing rue as well as its abortive properties were mentioned by Pliny the Elder in his Naturalis Historia (XX, 143). In Europe, rue was considered a powerful defense against witches during the Middle Ages. Piperno, a Neapolitan physician, in 1625, recommended rue as a treatment for epilepsy and vertigo. Today, the aerial parts of the plant are eaten in Italian salads, and are said to preserve the eyesight. Rue is currently mentioned in the pharmacopoeias of 28 countries where it is considered mainly as a stimulating, antispasmodic, diuretic and emmenagogue. Moreover, fresh and dried leaves are used to preserve and to flavour beverages and foods such as liquor (grappa) and wine, cheese and meat.”

Ruta graveolens is the scientific name for garden rue or herb-of-grace, one of about 1,500 species in the plant family Rutaceae (includes oranges, lemons, other citrus). A native of the Balkans and southeastern Europe grown worldwide, rue is known as sudab or sadab in India, arvada in Tamil, aruda in Singhalese, gedung minggu in Javanese and geruda in Malay. Ruta chalepensis is the scientific name for fringed rue, Aleppo rue or Egyptian rue. Rue researchers D. H. Tejavathil and B. L. Manjula in India summarize: “Ruta graveolens L., a member of Rutaceae, is well known for its wide utilities such as ornamental, aromatic and culinary in addition to medicinal properties. Medicinal value of this taxon is attributed to the accumulation of flavonoids, furanocoumarins, acridine alkaloids, furanoquinolins and also essential oils which led to its recognition as one of the sought after traditional medicinal plants by pharmaceuticals.” Perhaps a bit dangerous, too; according to Egyptian researchers: “On moist skin in direct sunlight, it leads to photosensitivity. The essential oil is a central nervous system depressant and at high doses has become a narcotic.”

A major rue essential oil component, 2-undecanone, is nicely summarized in wikipedia: “2-Undecanone is used in the perfumery and flavoring industries, but because of its strong odor it is primarily used as an insect repellent or animal repellent. Typically, 1–2% concentrations of 2-undecanone are found in dog and cat repellents…” According to its web site claiming “invention” by Dr. R. Michael Roe and referencing 3 patents: “North Carolina State University is currently seeking an industry partner to commercialize a novel, natural insect repellent for mosquitoes, ticks, chiggers, bedbugs, house dust mites, cockroaches, and other pests…A researcher at North Carolina State University has discovered that undecanone and related structures are repellents of mosquitoes, ticks, bed bugs, cockroaches, thrips, aphids, deer flies, gnats and other animals. In some tests, these compounds were found to be more effective than DEET…”

The Flowers of Chania web site provides a nice overview of rue species used as medicine in Crete, grown in Netherlands botanical gardens, and mentioned in Shakespeare’s Hamlet. Unlike the Balkan bean leaf remedy for spearing bed bugs, which has recently sparked the interest of those desperate for bed bug remedies, medicinal plants in the rue family known since ancient times have escaped scientific scrutiny against bed bugs. Probably much to the delight of bed bugs worldwide. According to researchers in India, “The most frequent intentional use of the plant has been for induction of abortion.” If only that powerful rue activity could be integrated to naturally abort bed bug populations just enough to allow humans a more bite-free sleep.

On the Internet are a varied array of commercial products with herbal essential oil and soap (detergent) ingredients sold for potential use against bed bugs (and usually other pests, as well). The herbal ingredients do not need extensive safety testing, as they are GRAS (Generally Recognized as Safe) substances commonly found in foods, cosmetics, etc.

According to the USA FDA (Food and Drug Administration) web site: ““GRAS” is an acronym for the phrase Generally Recognized As Safe. Under sections 201(s) and 409 of the Federal Food, Drug, and Cosmetic Act (the Act), any substance that is intentionally added to food is a food additive, that is subject to premarket review and approval by FDA, unless the substance is generally recognized, among qualified experts, as having been adequately shown to be safe under the conditions of its intended use, or unless the use of the substance is otherwise excluded from the definition of a food additive. Under sections 201(s) and 409 of the Act, and FDA’s implementing regulations in 21 CFR 170.3 and 21 CFR 170.30, the use of a food substance may be GRAS either through scientific procedures or, for a substance used in food before 1958, through experience based on common use in food.”

In other words, if there is a long tradition of eating the stuff and smearing it on your body, it is likely not to need hundreds of millions of dollars and decades of testing and regulatory agency compliance like a pharmaceutical product. So, you don’t have to wait 15 years for a bed bug remedy that will be several times more costly (to recoup the regulatory expenses) than what is already available. Being publicly sold on the Internet, samples of these GRAS pesticide products can often be obtained free of charge by researchers for scientific studies. Sometimes the studies, even if taxpayer or public funded, are published in respected commercial journals and hidden from public perusal behind formidable paywalls. But Internet search engines can usually at least turn up abstracts, media reports and summaries of varying quality and usefulness.

Rutgers researchers compared 11 herbal and detergent products (e.g. Sodium Lauryl Sulfate) and two synthetic pesticide products against bed bugs. A nice summary by the researchers published in an industry trade publication and titled “Natural Pesticides for Bed Bug Control: DO THEY WORK?” was made freely accessible via the Internet. Bed bugs were placed in laboratory chambers offering no escape from spray contact; a valid approach for most product comparisons. But given that many bed bug populations are pesticide resistant and that in real rooms bed bugs hide and avoid spray contact, real world results are usually lower than the lab numbers. These are more or less truisms, for both botanical and synthetic pesticide products. Which is why pest control operators often are called back to spray multiple times over several months or years; and why you need an integrative approach (relying on more than just sprays) and plenty of patience to rid yourself of bed bug infestations. A quick overview of integrative bed bug alternatives with a resource list is found in the Jan. 2015 issue of the IPM Practitioner (as of this writing, still available for free Internet download).

According to the Rutgers researchers, Temprid SC [Imidacloprid (21%) and Beta-Cyfluthrin (10.5%)] killed 100% of exposed adult bed bugs coming in contact with the spray in three days, and “was significantly more effective than Demand CS” [Lambda-Cyhalothrin (9.8%)]. The best herbal formulations were a bit slower: “EcoRaider and Bed Bug Patrol were the most effective biopesticides in both tests. EcoRaider [Geraniol (1%), Cedar Extract (1%) and Sodium Lauryl Sulfate (2%)] caused 100 percent mortality after 10 days in both tests. Bed Bug Patrol [Clove Oil (0.003%), Peppermint Oil (1%) and Sodium Lauryl Sulfate (1.3%] caused an average of 92 percent and 91 percent mortality after 10 days in the first and second experiment, respectively. Neither of these two products caused more than 75 percent mortality at three days after treatment…Bed Bug Bully [Mint Oil (0.25%), Clove Oil (0.3%), Citronella Oil (0.4%) and Rosemary Oil (0.4%)] caused 60 percent mortality after 10 days.”

Thus, the need for a patience and a multi-faceted, integrative approach to bed bug control using herbal or synthetic pesticides, tiny leaf hair-like spikes, CO2, traps, heat, cold, steam, mattress encasements, vacuuming, pheromones, clutter reduction, diatomaceous earth, silica gels, etc. If winning the war against bed bugs were easy, the insects would have been extinct long ago and you would not be reading this.


An Eco-Organic Ode to Ethanol (Ethyl Alcohol)

June 6, 2012

ETHANOL, AN ANCIENT DISINFECTANT commonly used in today’s medical and health-care hand sanitizers, is also produced by microbes in food fermentation and natural ecosystems. A simple two-carbon molecule abbreviated EtOH by chemists, ethanol (ethyl alcohol) is also routinely used in organic chemistry and commerce as a solvent for natural essences or tinctures like perfumes, food flavorings, and medicinals.

“By far the most common natural source of ethanol is fermentation of fruit sugars by yeasts,” wrote Douglas J. Levey in The Evolutionary Ecology of Ethanol Production and Alcoholism, an article in Oxford Journals’ Integrative & Comparative Biology. “Although ethanol is an end product of fermentation, the fungi that produce it are locked in a complex set of interactions with fruiting plants, frugivorous vertebrates, and other microbes. Given that ethanol affects both vertebrates and microbes, it is likely to have at least some adaptive basis. In particular, it may be viewed as a defensive agent, used by yeasts to inhibit growth of competing microbes in much the same way as penicillin is thought to give Penicillium fungi the upper hand in competition with bacteria.”

“In an anthropological context, fermentation can be viewed as controlled spoilage of food,” wrote Levey. “The microbes responsible for the later stages of food spoilage generally cannot grow in alcoholic or acidic environments. Thus, by culturing the production of alcohols and in many cases organic acids via limited exposure to oxygen, the food is protected. Long before refrigeration and synthetic additives, fermentation was one of the most important food preservation technologies… As they discovered the inebriating qualities of some fermented foods, they focused attention on those fermentative processes, ultimately leading to the beer and wine industries of today.”

Ethanol and fermentation are part of fruit plant reproductive ecology. Ethanol molecules multi-task: Fruit pulp is protected from microbial decay by ethanol. Ethanol also attracts fruit pulp-eating (frugivorous) animals aiding plant reproduction via seed dispersal. In essence, fruit pulp is redirected in the ecological food chain from microbes to higher animals, to the benefit of fruit plant reproduction.

“The low molecular weight of ethanol and its substantial concentration within fruit pulp well suit this molecule for long-distance signaling of availability to appropriate consumers,” wrote Robert Dudley in an article titled Ethanol, Fruit Ripening, and the Historical Origins of Human Alcoholism in Primate Frugivores in a 2004 issue of Integrative & Comparative Biology. “Ripening involves production of a number of fruit volatiles, but ethanol is perhaps the only olfactory commonality to an otherwise bewildering taxonomic array of angiosperm fruits.”

“As with longevity and fitness benefits of ethanol exposure in fruit flies, epidemiological studies in modern humans demonstrate a reduction in cardiovascular risk and overall mortality at low levels of ethanol consumption relative either to abstinence or to higher intake levels,” writes Dudley. “If natural selection has acted on human ancestors to associate ethanol with nutritional reward, then excessive consumption by modern humans may be viewed as such a disease of nutritional excess. Availability of ethanol at concentrations higher than those attainable by yeast fermentation alone (i.e., 10–12%) is a very recent event in human history.”

Underscoring the importance of ethanol in ecosystems, yeast fungi survive up to 15% (v/v) ethanol concentrations that are lethal to most microbes. Distillation, a technique known to ancient alchemists that survived the transition from magical potions to modern chemical science, of course boosts ethanol concentrations to much higher and more lethal/toxic levels than those found in natural ecosystems.

Ethanol is also an ecological feedstock. Yeasts and certain bacteria further transform (oxidize) ethanol into acetic acid or vinegar, which besides being culinary is toxic to many microbes. In India and elsewhere, anti-microbial solutions of vinegar and baking soda commonly replace harsh commercial chemicals for floor and surface cleaning.

Ethanol’s role as an animal attractant can be turned to human advantage: for example, in ecological pest control as part of traps or trap crops. Christopher Ranger and Michael Reding of the USDA-ARS in Wooster, Ohio, and Peter Schultz, Director of Virginia Beach’s Hampton Roads Agricultural Research and Extension Center told the Entomological Society of America (ESA): Ethanol released by stressed (e.g. lack of water) or doped (injected with ethanol) forest or nursery trees (e.g. magnolias) attracts ambrosia beetles (Xylosandrus species). “A successful trap crop strategy might include 75ml (2.5 fl oz) of 90% ethanol injection of cull or park grade trees of an attractive species within the field production block or along the border between a woodlot and the high value nursery crop species,” said Schultz.&&

In the USA, where the federal government controversially subsidizes corn ethanol and mandates its use as a fuel, Douglas Landis and University of Illinois-Urbana colleagues Mary Gardinera, Wopke van der Werf and Scott Swinton wrote of the deleterious ecological consequences of growing too much corn in a 2008 issue of the Proceedings of the National Academy of Sciences of the USA. In contrast to intercropping strategies promoting landscape diversity and biocontrol of pests by natural enemies, increasingly large almost monoculture acreages of corn create a less diverse landscape with less biocontrol in other regional crops like soybeans. Too much corn in the landscape costs soybean producers in Iowa, Michigan, Minnesota and Wisconsin an estimated $239 million in reduced yields and increased pest control costs.

Not that planting corn need be bad. Indeed, the Native Americans traditionally interplanted corn with squash, beans, strawberries, sunflowers, and diverse weedy species that promoted ecological balance between pests and natural enemies. “Biological control of insects is an ecosystem service that is strongly influenced by local landscape structure,” wrote Landis et al. “Altering the supply of aphid natural enemies to soybean fields and reducing biocontrol services by 24%” from planting too much corn cost an estimated $58 million in soybean crop loss and control costs for just one pest, the soybean aphid.

Distiller’s dried grains (DDGs) leftover from ethanol production could potentially be utilized in innovative ways. Though with billions of gallons of corn ethanol being distilled, the emphasis is understandably on utilizing big tonnages of DDGs for animal feed, mulches, etc., rather than really innovative research that could yield niche corn-based products for medical use. Yiqi Yang, a Professor of Biological Systems Engineering and Charles Bessey Professor in the Nebraska Center for Materials and Nanoscience and the Departments of Biological Systems Engineering and Textiles, Clothing and Design at the University of Nebraska-Lincoln, believes that small research investments could yield niche innovations like medicines (e.g. corn-derived cancer-fighting molecules small enough to enter the brain) and biodegradable filters that can be left in the human body.