Carbon Dioxide Gas Combats Bed Bugs

July 24, 2012

CARBON DIOXIDE GAS, an essential nutrient for photosynthesis and the human and animal food chain consuming green plants, can also play a key role in bed bug control. As an attractant, carbon dioxide (CO2) is useful for monitoring and trapping bed bugs and other vampire-like blood-suckers attracted to the gas, including ticks, mosquitoes, and assorted biting flies. Carbon dioxide gas, which has been used to fumigate everything from stored grain and food products to freight containers, museum collections, and hotel and motel rooms, can also be used to fumigate clothing, furnishings, books, electronics, and other bed bug-infested items.

Carbon, carbon dioxide, and the carbon cycle are integral to our very existence on planet Earth. “The carbon of the Earth comes in several forms,” writes University of Cambridge chemist John Emsley in his fascinating Oxford University Press book, Nature’s Building Blocks (An A-Z Guide to the Elements). “Most of what we eat –carbohydrates, fats, proteins and fibre – is made up of compounds of carbon…most ingested carbon compounds are oxidized to release the energy they contain, and then we breathe out the carbon as carbon dioxide. This joins the other carbon dioxide in the atmosphere, from where it will again be extracted by plants and become part of the carbon cycle of nature…The cycle rules the tempo of life on Earth and turns over 200 billion tonnes of carbon each year…In this way carbon is passed up the various food chains, with each recipient releasing some as carbon dioxide, until most carbon is back where it started.”

Does this mean that using carbon dioxide for bed bug control is environmentally acceptable, since it is kind of a “miracle of life” gas behind photosynthesis and plant life? Or is carbon dioxide really more the evil greenhouse or global-warming gas causing global climatic havoc and deserving of punishment via carbon taxes and elimination from the atmosphere via geological carbon sequestration (storage) schemes? Perhaps we should offset carbon dioxide releases for bed bug pest control with offsetting carbon dioxide injections into greenhouses, where elevated CO2 levels increase yields of greenhouse roses, tomatoes, cucumbers, peppers and other crops.

“Carbon is probably the most important element from an environmental point of view,” writes Emsley in Nature’s Building Blocks. “The Earth’s early atmosphere may have contained a lot of carbon dioxide and methane, but once life evolved that began to change. Today, there is very little of these gases and a lot of oxygen instead, thanks chiefly to the action of plants which convert carbon dioxide and water into carbohydrate and oxygen by photosynthesis. The Earth’s atmosphere contains an ever-increasing concentration of carbon dioxide and carbon monoxide, from fossil fuel burning, and of methane, from paddy fields and cows. Human contributions to these sources are still minor compared with natural sources: most carbon dioxide comes from plants, microbes and animals, while methane is given off by swamps, marshes and termite mounds.”

Obviously best to avoid bed bug infestations, and not have to think about remedies like carbon dioxide trapping or fumigations. Italian chemist Primo Levi makes the most persuasive literary argument: “Carbon dioxide, that is, the aerial form of carbon…this gas which constitutes the raw material of life, the permanent store upon which all that grows draws, and the ultimate destiny of all flesh, is not one of the principal components of air but rather a ridiculous remnant, an ‘impurity,’ thirty times less abundant than argon, which nobody even notices. The air contains 0.03 percent; if Italy was air, the only Italians fit to build life would be, for example, the 15,000 inhabitants of Milazzo in the province of Messina. This, on the human scale, is ironic acrobatics, a juggler’s trick, an incomprehensible display of omnipotence-arrogance, since from this ever renewed impurity of the air we come, we animals and we plants, and we the human species, with our four billion discordant opinions, our millenniums of history…”

Bed bugs concern themselves little with environmental correctness, and just tune into characteristics like the heat and carbon dioxide released by metabolizing warm-blooded meal hosts like humans, poultry, rodents, rabbits, etc. A flush from a CO2 cartridge is enough to flush bed bugs from their harborages or hiding places onto a bed in search of a meal. But more naturally, bed bugs follow CO2 gradients to locate live hosts for their blood meals.

“Carbon dioxide has been shown by several researchers to be the most effective attractant for bed bugs,” University of Florida-Gainesville entomologist Philip Koehler told a recent Entomological Society of America (ESA) annual meeting. Humans produce about 700 mg (0.02 oz) of CO2 per minute. “Thus, detectors with very slow CO2 releases cannot compete with human hosts,” said Koehler. “A rapid CO2 release is a better mimic to the human breathing pattern. Detectors with fast CO2 release captured about 4x more bed bugs than detectors with slow release.”

Trapping or monitoring bed bugs with CO2 is complicated by the fact that at different times in the life cycle bed bugs seek out hosts (releasing CO2) for blood meals when hungry; and then when well-fed, instead of CO2 bed bugs seek shelter in groups or cracks and crevices. So although CO2 is the better lure for hungry bed bugs, bed bugs that have fed have different needs and respond to different lures.

A commercial product, FMC’s Verifi(TM) trap, is a dual-action detector combining “fast CO2 generation with liquid kairomone and pheromone lures to attract both host-seeking bed bugs and aggregation-seeking bed bugs,” Koehler told the ESA. Carbon dioxide and the kairomone lure blood-seeking bed bugs into a pitfall part of the trap from which there is no escape. A pheromone lures harborage- or aggregation-seeking bed bugs seeking shelter in cracks and crevices into another part of the trap.

“An inexpensive detector that can be left in place and routinely serviced is needed to aid pest management professionals,” Ohio State University’s Susan Jones told the ESA. “Rutger’s do-it-yourself dry ice (frozen CO2) traps are a cheap and effective method for overnight surveys of potentially infested habitations.” An experiment in a 13-story high-rise apartment building in Columbus, Ohio compared (see You Tube video) 3 Verifi(TM) bed bug detectors per room with 1 CO2-generating dry ice trap per room and canine (dog) detection teams (2 dogs/room; same handler).

Verifi(TM) traps detected bed bugs in 11 of 17 infested rooms in the first 24 hours; and in 14 of 17 infested rooms within a week. Dry ice traps had similar efficacy. Dogs detected bed bugs in 19 rooms, including 3 rooms where neither visual inspections nor dry ice or Verifi(TM) traps detected anything. But the dogs were also not perfect, as each dog also missed 1 room rated positive for bed bugs. So the quest to capture bed bugs with carbon dioxide and other lures goes on.

Human ingenuity seems almost unlimited when it comes to traps. Carbon dioxide, heat and other attractants are all being tested with traps as varied as Susan McKnight Inc.’s Climbup bed bug trap and pitfall traps made from inverted dog bowls painted black on the outside. Rutgers’ Narinderpal Singh tested CO2, heat, and lures such as nonanol, octanol, 1-octen-3-ol, coriander, and spearmint with inverted dog bowl pitfall traps. CO2 had an additive effect with multiple-component lures in inverted dog bowl traps, and may be developed into an inexpensive monitoring system for detecting low levels of bed bugs. Trials with baited traps are continuing.

Both carbon dioxide and ozone show fumigant potential against bed bugs. Purdue University’s Kurt Saltzmann told the ESA of “Two devices capable of delivering ozone to laboratory fumigation chambers.” One device delivered a short exposure to high ozone levels, and the other long exposure to low ozone levels. “Preliminary experiments showed that adult male bed bugs were susceptible to relatively short periods of ozone exposure when high concentrations of ozone were used,” said Saltzmann. “100% mortality was achieved when bed bugs were exposed to 1800 ppm ozone for 150 minutes.” Low ozone fumigation is also being tested with 1-2% hydrogen peroxide for up to 72 hours.

Carbon dioxide (CO2) is used by libraries, museums, and others as an insect-killing fumigant. Indeed, dry ice (frozen CO2) to release CO2 gas is cheaper than washing and drying fabrics to kill bed bugs, Rutgers University’s Changlu Wang told the ESA. At an 80% concentration, CO2 kills all bed bug eggs in 24 hours (eggs are the toughest bed bug life stage to kill). A 50% CO2 concentration for 8 hours is sufficient to kill bed bug nymphs (immatures) and adults.

Wang’s CO2 fumigations involved filling Husky garbage bags 90% full of items such as mattress covers and fabrics, leaving little room for air. Then the bags were sealed with dry ice inside for several hours. Books, electronics, toys and other items damaged by heat treatments might benefit from the low temperatures created by dry ice treatments. However, for safety reasons Wang recommends wearing gloves and turning on fans for ventilation when opening many bags filled with carbon dioxide gas (fumigant).

Advertisements

Silverfish & Firebrats

August 15, 2009

SILVERFISH AND their heat-loving firebrat cousins attract surprisingly little research interest despite being major worldwide pests and chewing up rare book and paper collections along with food and textiles. But University of California, Riverside, entomologists are developing a renown for venturing into overlooked urban and domestic pest control realms. For her UCR Masters thesis, Mirtza Millard, an accomplished SciFi and Fantasy book illustrator, followed in the 17th-century footsteps of English microscope pioneer Robert Hooke. Hooke’s 1665 book Micrographia featured a lavishly illustrated chapter titled “To the small Silvery Bookworm.”

Millard, who is leaving behind Riverside firebrats and silverfish to study Texas ants, recommends baiting and trapping strategies rather than conventional pesticide sprays. Though pyrethroid and diatomaceous earth insecticides are often helpful, silverfish and firebrats may be repelled and go into hiding in cracks and crevices when surfaces are sprayed with conventional pesticides.

Fipronil, carbaryl or avermectin formulated into egg noodle and dog food baits work well against firebrats in lab tests; boric acid, indoxacarb and imidacloprid were not so effective. Conventional ant and cockroach baits (e.g. hydramethylnon) may be tasted (scraped on the outside), but are ineffective because they are not eaten. At UCR, Millard found that small particle (0.25-0.4 mm) baits made from grinding up high-protein egg noodles worked better than large particle and starchier baits.

Millard traps these wingless, crawling insects in small glass jars ringed with a sticky surface on the outside to make it easy for the pests to crawl inside. Once over the top of the jar, the insects lack wings to fly and cannot crawl out over the steep slick glass surface. It is similar to when silverfish seeking moisture and humidity get trapped in bathtubs and sinks and futilely try to crawl out.

Jar traps are best placed near cracks and crevices and in corners near foraging sites. It takes trial and error to master trap placement and figure out foraging sites. So try placing the small glass jar traps in different corners and near cracks and crevices until the best trap placement is learned. Numbers trapped may be small, as the insects cluster together mainly to mate, lay eggs and keep warm (via body heat) when it is cold.