Pollinator-Friendly Lawns: Flowers or No Flowers?

April 28, 2013

TURF is a $25 BILLION USA INDUSTRY, said Nastaran Tofangsazi of the University of Florida (Apopka, FL), a sex pheromone researcher looking to complement biocontrols like beneficial Beauveria bassiana fungi and Steinernema carpocapsae nematodes to control the browning and uneven grass growth caused by tropical sod webworm (Herpetogramma phaeopteralis) in Florida’s $9 billion worth of turfgrass. Also at the Entomological Society of America (ESA) annual meeting, Auburn University’s R. Murphey Coy noted that the USA’s 164,000 km2 (63,320 square miles) of turf is the USA’s most irrigated crop. Turfgrass irrigation consumes 300% more water than corn; plus 4.5 pounds (2 kg) of nitrogen per 1,000 square feet (93 m2).

Alabama is among the top USA turfgrass-producing states, and Auburn University researchers are looking to reduce turfgrass water, nitrogen and iron inputs by colonizing grass seeds and roots with easy to apply sprays of plant growth promoting rhizobacteria (PGPR). Blends of PGPR species such as Bacillus firmis, Pseudomonas and Rhizobium in turfgrass and cotton induce systemic resistance to pestiferous Fusarium fungi and triple parasitic wasp biocontrol of the caterpillar larvae of moth pests like fall armyworm (Spodoptera frugiperda).

Not everyone is a fan of turfgrass lawns, and before the modern chemical era lawns were more like fragrant flowery meadows. “Agricultural experts and agribusiness are bound by the idea that even land that has lost its natural vitality can still produce crops with the addition of petroleum energy, agricultural chemicals, and water…considering this form of agriculture to be advanced,” wrote Japanese agriculturist and philosopher Masanobu Fukuoka in the book, Sowing Seeds in the Desert (edited by Larry Korn).

“When I suggested that it would be a good idea to plant fruit trees to line the streets in towns and cities and to grow vegetables instead of lawns and annual flowers, so that when the townspeople were taking a walk, they could pick and eat the fruit from the roadside, people were surprisingly enthusiastic,” said Fukuoka. “When I suggested that it would be good to scatter the seeds of clover and daikon on the existing lawns so that in two or three years the clover would overcome the lawn and the daikon would take root amid the ground cover, interestingly, it was the Asian people and Asian-Americans who said they would try it right away. Most Americans would just laugh and agree with the theory, but they were cautious about putting it into practice. The reason, I believe, is that it would challenge their adherence to ‘lawn’ culture. If they cannot overcome this prejudice, there will be a limit to the growth of family gardens in the United States.”

“It seems that the main goal in the life of the average American is to save money, live in the country in a big house surrounded by large trees, and enjoy a carefully manicured lawn,” wrote Fukuoka. “It would be a further source of pride to raise a few horses. Everywhere I went I preached the abolition of lawn culture, saying that it was an imitation green created for human beings at the expense of nature and was nothing more than a remnant of the arrogant aristocratic culture of Europe…Because residential lots are large in the United States, a family vegetable garden can provide for all the food needs of a typical family, if they are willing to do the work. In Japan, a residential lot about a quarter acre would be enough to allow near self-sufficiency and provide a healthy living environment, but I learned—to my envy—that in many suburban and rural areas of the United States, people are not allowed to build houses on small lots.”

On closer inspection, modern American lawns are more often a biodiverse mixture of turfgrass and flowering plants like clover and dandelions. Kentucky bluegrass lawns may be 30% white clover, which favors native pollinators like bumblebees. Clover and dandelion flowers attract honey bees, bumble bees, parasitic wasps that kill pests, hover flies (syrphids) that eat aphids, and carnivorous rove and ground beetles eating snails, slugs, caterpillars and other pests. Nonetheless, tons of herbicides go onto USA lawns to eradicate clover and dandelions as weeds, often as part of fertilizer and insecticide mixtures.

Turf biodiversity is all well and good, but only as long as the clover and dandelion flower nectar is pure and uncontaminated by pesticide cocktails. Lawns laden with clover and dandelion flowers provide bees and beneficial insects with “a big gulp of nectar,” the University of Kentucky’s Jonathan Larson told the ESA annual meeting in Knoxville, Tennessee. When those “big gulps of nectar” are laced with certain neonicotinoid pesticides, the effects can ripple through the ecological food chain.

When turfgrass pesticide labels say, ‘Don’t treat flower heads,’ “Follow the label to the letter of the law” to avoid poisoning pollinators, said Larson. Or get rid of the flowering plants in the lawn by mowing the turf before spraying. Or delay pesticide sprays until after clovers, dandelions and other lawn flowers have finished flowering. Clover control in lawns using herbicides is difficult, and usually not feasible, Larson told the ESA. Hence, mowing is the preferred strategy for removing flowering lawn weeds before spraying pesticides.

In enclosure experiments with tents confining bees in the turf, mowing the turf before pesticide treatment mitigated the problem, resulting in more bees and more honey. In 2012, bees were tented on clothianidin-treated turf for 6 days and then moved for 6 weeks to a Lexington, Kentucky, horse ranch with unsprayed turf. Clothianidin reduced the rate of bumble bee weight gain, but at the end of 6 weeks the bees were starting to catch-up. But overall, the 6-day pesticide exposure still resulted in reduced bumble bee weight gain, less foraging and reduced queen and hive reproduction several weeks later. Chlorantraniliprole, which has a different mode of action (muscular), did not produce these adverse effects. Larson also told the ESA that clothianidin, a widely used neonicotinoid turf pesticide, also reduces decomposers (detritivores) like soil-dwelling earthworms and springtails more than chlorantraniliprole.

Besides supporting more soil life, more biocontrol organisms, and healthier crops of pollinating bees, you get a healthier turfgrass lawn if you do not need pesticides and do not have to mow so often. “Mowing height is an easily manipulated cultural practice that can have an impact on ecological conditions,” Samantha Marksbury from the University of Kentucky, Lexington, told the ESA. “Taller grass usually supports a more diverse ecosystem and increases natural enemies. Increasing cutting height stimulated deeper roots, yielding a healthier turf with less need for insecticide. Higher mowing height decreases need for irrigation and the canopy prevents water loss.”

Taller turf (raised mowing height) also tends to be more robust and more tolerant of white grubs. Nevertheless, about 75% of turf is lush residential monocultures (mostly one grass species) that is heavily fertilized, dosed with chemical herbicides and frequently mowed, Emily Dobbs of the University of Kentucky, Lexington, told the ESA. However, the ecology of grass cutting or mowing gets quite complex and has seasonal variations. In May, turf with a low mowing height (2.5 inches; 6.4 cm) was hotter, drier, and had the most predatory ground beetles, rove beetles and spiders. Later in the season and Sept/Oct, turf with a higher mowing height (4 inches; 10.2 cm) was cooler, wetter, and had the most predators.

Historically, in the Middle Ages in England, going back many centuries (even before Chaucer) before the age of chemical farming and gardening, lawns were “flowery meads” with roses, violets, periwinkles, primroses, daisies, gillyflowers and other colorful, fragrant flowers interplanted right into the turf. The idea of planting a lawn with one species of grass made no sense, though a camomile lawn or plot came into being for infirmary gardens in England after 1265, as this medicinal aromatic plant helped other plants growing nearby in poor soils and grew faster the more it was trodden.

“There were no flower-beds of the sort familiar to us,” wrote Teresa McLean in her 1981 book, Medieval English Gardens. “The simplest type of flower garden was the flowery mead, wherein low-growing flowers were planted in turf lawns, sometimes walled, sometimes left open, to make a beautiful domestic meadow. The flowery mead was the locus amoenus of God’s beautiful world.”

“Trees were often planted in raised turf mounds, surrounded by wattle fences, which doubled as seats,” wrote McLean. “Medieval lawns, unlike modern ones, were luxuriously long, and full of flowers and herbs; they were fragrant carpets to be walked, danced, sat and lain upon. What modern lawn could find a poet to write about it as Chaucer wrote about the one in the Legend of Good Women?

Upon the small, soft, sweet grass,
That was with flowers sweet embroidered all,
Of such sweetness, and such odour overall…”

Advertisements

Medicinal Caterpillar Fungus High in Nepal’s Himalayan Mountains

December 27, 2012

CATERPILLAR FUNGI ARE not everybody’s finger food, though their beautifully-sculpted medicinal mushrooms are rich in fiber, amino acids, minerals and vitamins. The caterpillar fungus of commerce, Cordyceps sinensis, grows high in the Himalayan Mountains in the larvae (caterpillars) of equally high-altitude Asian ghost moths (genus Hepialus). An ancient medicine or tonic, caterpillar fungus is in reality part insect (mummified caterpillar) and part fungus; and perhaps a conundrum for vegetarians, who might have to take a pass on its medical benefits because of its animal kingdom (insect) component.

Cordyceps is an abundant resource of useful natural products with various biological activity, and it has been used extensively as a tonic and health supplement for subhealth patients, especially seniors, in China and other Asian countries,” write Kai Yue and colleagues at Sichuan Agricultural University in an article pre-published online in October 2012 in the Royal Pharmaceutical Society’s Journal of Pharmacy and Pharmacology.

For perhaps thousands of years (at least several hundred) in China and other Asian countries, “Cordyceps sinensis (Caterpillar fungus) has been used as a tonic for longevity, endurance, and vitality,” write Chinese Academy of Sciences researchers Zhenquan Liu et al. in an Open Access journal, Behavioral and Brain Functions. “Many studies have shown that Cordyceps sinensis modulates immune responses, inhibits tumor cell proliferation, enhances hepatic function, regulates insulin sensitivity” and modulates steroid production.

“Although Cordyceps sinensis is extensively used in Chinese medicine, it lacks scientific grounds for its efficacy,” write Liu et al. In other words, it has worked like magic for centuries; providing practical benefits, though the exact mechanisms of how it works are unknown or speculative. The Chinese researchers argue that even proponents of modern medicine objecting to traditional natural or folkloric medical treatments could benefit from studying the caterpillar fungus. Their argument is that the research results from studying the mechanisms of how the caterpillar fungus works to heal or prevent disease could also be used to develop more conventional medical or drug treatments.

Caterpillar fungus could be particularly useful for certain brain strokes, where modern medicine lacks effective drugs and treatments. ”The lack of effective and widely applicable pharmacological treatments for ischemic stroke patients may explain a growing interest in traditional medicines,” wrote Liu et al. An example is “self-medication or preventive medicine” to prevent cerebral ischemia. In this type of stroke, brain oxygen levels are too low; which can trigger a cascade of biological events leading to brain damage and death. Caterpillar fungus prevents or protects against this type of brain stroke (“ischemia-induced brain infarction”), presumably by inducing or modulating production of a steroid, 17beta-estradiol.

Cordyceps sinensis mushrooms growing out of golden caterpillar bodies are sometimes artfully and decoratively displayed in high-end Chinese herbal shops. Caterpillar fungus achieved some notoriety when it was revealed to be a dietary supplement for Chinese athletes bringing home gold and silver medals at the 2008 Beijing Olympics.

“In China, this fungus is usually called ‘Dong Chong Xia Cao,’ which means ‘Worm in winter and grass in summer,’” write Kai Yue and colleagues at Sichuan Agricultural University. “This insect parasitizing fungus lives primarily on the head of the larva of one particular species of moth, Hepialus armoricanus Oberthur (Lepidoptera), but is occasionally found growing on other moth species. Cordyceps was first introduced to Western society during the 17th century. In 1878 Saccardo, an Italian scholar, named Cordyceps derived from China officially as Cordyceps sinensis (Berk.) Sacc., and this nomenclature has been adopted up to the present day.”

At a Nepal Overseas Entomologists members symposium at the Entomological Society of America (ESA) annual meeting in Nov. 2012, at the Convention Center in Knoxville, Tennessee, Bhishma Subedi of the Asia Network for Sustainable Agriculture and Bioresources (ANSAB) screened a 20-30 minute documentary film as part of a talk titled, “Cordyceps sinensis a natural viagara(sic) from the mountains of Nepal.” Even the other Nepali entomologists in attendance learned something new, as the caterpillar fungus is found only in remote Himalayan Mountain locales; and it is not common knowledge, even in Nepal.

Known in Nepal by its Tibetan name, yarsagumba, caterpillar fungus is well-hidden; blending like a camouflaged black joss stick into black soils and grasses on slightly north-facing (5-10 degrees) Himalayan slopes 3,200 to 4,500 meters (10,500 to 14,800 ft) high. Yarsagumba lands are several days trek from anyplace where people normally live, and the ground is covered in snow 6 months of the year. But this is where temporary high-mountain camps must be set up for hunting the difficult-to-find caterpillar fungus.

Searching for the camouflaged black and debris-covered yarsagumba means crawling on hands and knees or bending over among short grasses and melted snow. Men search for yarsagumba and other medicinal herbs in the vicinity, while women stay behind and maintain the base camps. A certain Buddhist purity is maintained in yarsagumba lands; there is no alcohol, no tobacco and no shouting, loud voices or arguing. People pray, and the first yarsagumba found is offered to the Gods.

The beauty of the mountains belie the harshness of the climate and the difficulty of the life in search of yarsagumba; it’s a tough way to earn money in these remote mountains where economic opportunities are few. Storms can come at any time, and it is easy to fall down a steep cliff when climbing in the snow. A fall near a cliff edge can mean loss of limbs and frequently death. There are no second chances, no safety nets to catch you up here. Medical treatment is do-it-yourself, by necessity. Conventional medicine and doctors are many days distant. Widows are commonplace at all ages; and many subsistence families in Nepal have lost husbands, fathers, brothers and sons during the search for yarsagumba and medicinal herbs that may help others prevail against brain strokes and other maladies.

It takes seven cleanings with a toothbrush to remove all the debris and black soil, and make the black yarsagumba look like a proper insect, namely a golden caterpillar. The going price from the middlemen is 80,000 rupees per kilo; with 3,500 to 4,000 pieces of clean golden caterpillars per kilo. It takes five people a month to find a kilo. People are doing well to come out of the season with 60,000 rupees, before the expenses of the trek and weeks or months of camp costs. Recently, the Nepal government imposed a 20,000 rupee per kilo tax or royalty on the trade.

After being steamed and packaged, most of the yarsagumba eventually is exported and finds its way to the Chinese market. The yarsagumba trade is estimated at 2 tons annually. But in Nepal, since the government-imposed 20,000 rupee/kilo royalty or tax went into effect, it was like the yarsagumba harvest had become illegal for Nepal’s subsistence mountain people. Royalties were paid on only 3 kilos in a recent year. Perhaps there is a free market and tax lesson in all this. Or perhaps it is just part of the great wheel of life.


Moth-Eye Reflections

September 8, 2011

“ANTI-REFLECTION MOTH-EYE ARRAYS are now widely applied in panels of instruments, like cellphones and in window panes,” wrote Doekele G. Stavenga of the Department of Neurobiophysics at the University of Groningen (The Netherlands) in Functional Surfaces in Biology -Little Structures With Big Effects, Volume 1. The editor, Stanislav Gorb of the University of Kiel (Germany), thanked senior publishing editor Zuzana Bernhart (Plant Pathology and Entomology; Springer, Holland) for her “belief in this topic and her personal help.” Bernhart said that a big dose of the inspiration for the two book volumes came from what have become regular symposia on insect-inspired innovations at the Entomological Society of America (ESA) annnual meetings.

At nanotechnology events, insects and entomology are acknowledged frequently as inspiration. For example, at the California NanoSystems Institute on UCLA’s campus, Tomohide Takami, a researcher visiting from the Division of Quantum Phases and Devices at Konkuk University (South Korea), said “we have fabricated a bio-mimetic probe called ‘nano-mosquito’…to explore nano-world.” In a prior lecture Xiaodong Chen visiting from Nanyang Technological University (Singapore) noted: 1) energy storage devices, lightweight aerospace materials, and self-assembly inspired by diatoms and honey bee honeycombs; 2) Singapore’s waterfront Esplanade Theatres on the Bay is an architectural shape perhaps inspired by fly eyes and tropical fruit (durian); 3) moth eyes that are anti-reflective (so enemies do not see the glint of their eyes) and provide better vision at night and in fogs inspire solar cells that harvest more light.

“Anti-reflective moth-eye arrays could produce up to 12% more energy than those employing single layer anti-reflective coatings,” via “a reduction of up to 70% of the light reflected from the surface,” said Stuart Boden and Darren Bagnall of the University of South Hampton (UK) in their poster display (“Bio-mimetic nanostructured surfaces for near zero reflection from sunrise to sunset”). Via electron beam lithography and dry etching (subwavelength): “We have fabricated a range of moth-eye arrays in silicon. Reflectance measurements confirm the low reflectivity of these arrays over the visible and near infra-red wavelengths, making them excellent candidates for reducing reflection on solar cells.”

“Insects have facetted, compound eyes, consisting of numerous anatomically identical units, the ommatidia,” wrote Doekele Stavenga and his colleagues in the Proceedings of the Royal Society B (22 March 2006. 273(1587):661-667), a journal whose roots date back over 200 years to London in 1800. Back in the 1960s, researchers discovered that the outer surfaces of moth eyes had “an array of cuticular protuberances termed corneal nipples” which reduce light reflection to 1%. Thus, moth night vision is improved by allowing 99% of light to enter moth eyes. Fewer reflections or less glint from the eyes makes moths harder for predators to detect. [Moth defenses against bat echo-location is another story, for another time]

“Moths thus realize a much higher light sensitivity than butterflies, allowing a nocturnal instead of diurnal (daylight) lifestyle,” wrote Stavenga et al. “A moth with large, glittering eyes will be quite conspicuous, and therefore its visibility is reduced by the eye reflectance decreasing… The insight that nipple arrays can strongly reduce surface reflectance has been widely technically applied, e.g. in window panes, cell phone displays and camera lenses.”

Moth-eye antireflection coatings (ARCs), “which are inspired by the grainy microstructures on the corneas of moths consisting of a non-close-packed hexagonal array of conical nipples, can suppress reflection over a broader range of wavelengths and wider angles of incidence than traditional multilayer dielectric ARCs,” wrote Chih-Hung Sun and other chemical engineering colleagues at the University of Florida, Gainesville, in an article titled “Large-scale assembly of periodic nanostructures with metastable square lattices.”

Moth-eye ARCs, reported Sun et al., “are widely utilized in eliminating the “ghost images” for flat-panel displays, increasing the transmittance for optical lenses, improving the out-coupling efficiency of semiconductor light emitting diodes, and enhancing the conversion efficiency of solar cells.”

“Since all biological structures are multifunctional, it makes them even more interesting,” wrote Stanislav Gorb in his introduction to the Springer book, Functional Surfaces in Biology. “Small surface structures at the micrometer and nanometer scales (i.e. very very small) are often vitally important for a particular function or a set of diverse functions…Because of the structural and chemical complexity of biological surfaces, exact working mechanisms have been clarified only for some systems.”

Some other possible innovations from the micro-world described in the Springer book: Protective slime coatings that protect seeds from rotting (e.g. pathogens) and stimulate or inhibit seed germination as needed. Water-repellent hairs have been “invented” by spiders. Water bugs can inspire waterproofing, anti-submersion fabrics, and surfaces promoting water runoff. Self-cleaning plant surfaces that cause water to form spheres and roll off are inspiration for water-repellent surfaces that might also trap air underwater for breathing. The plant world’s system of water transport pipes (xylem) can yield ideas for water transport systems. Feather microstructures could inspire aerodynamic innovations to complement lessons learned from insect flight.

We have barely scratched the surface of the ingenious natural world that we inhabit and share.


Asian Innovations in Insect Control

August 20, 2011

Innovations in Insect Control in Asia date back almost 2,000 years to when ancient Chinese farmers learned the art of biological insect control. China’s ancient orchardists annually introduced colonies of predatory ants to cultivated trees to control caterpillars and other pests of crops such as citrus. Ancient Chinese biocontrol practices included constructing bamboo bridges between trees, so predatory ants could easily wander from tree to tree foraging for pests.

Fast forward to the twenty-first century: Tea is arguably the second most widely consumed beverage, after water. Tea production occupies 2.7 million ha (6.7 million acres) in 34 countries, with 78% of production in Asia and 16% in Africa. Sustainable tea production practices emphasize displacing pesticides with cultural and biological control practices to control spider mites and other pests in tea plantations.

“The application of natural enemies in tea pest control aroused a large amount of investigations in the tea producing countries,” reported Yang Yajun and colleagues at the Tea Research Institute of Chinese Academy of Sciences at the 2005 International Symposium on Innovation in Tea Science and Sustainable Development in Tea Industry. “In South India, investigations showed the introduction of three species of entomophagous fungi in the control of tea spider mite (Oligonychus coffeae). In Japan, the use of pesticide-resistant predatory mite resulted in successful control…In Japan, one fungal preparation and one bacterial preparation were registered and used in control of tea diseases.” In China and Japan, viruses stop pesky leafrollers and loopers. Japan also has five fungal biocontrol products, one bacterial biocontrol preparation, and several kinds of parasitic and predatory natural enemy preparations to control tea insect pests.

“Great achievements in the application of physical and agricultural control methods in controlling the tea pests were advanced,” said Yajun et al. In Japan, China, and Malawi (Africa), yellow sticky traps and reflective films (near ultra-violet light) help control tea aphids, thrips, and leafhoppers (70-80% pest reduction). “A special mist wind insect-sucking machine was developed in Japan,” and it reduces tea leafhopper, whitefly, and spider mite populations.

Sex pheromones have been used for mating disruption in Japanese tea gardens since 1983 to control a pesky tea leafroller. Sex pheromones are also being used against other tea pests in Japan and China. Natural volatiles from the tea plant that attract natural enemies but not pests are also under development. For example, the April 2004 Chinese Journal of Applied Ecology (15(4):623-626) reported that beneficial lady beetles, green lacewings, and hover flys (syrphids) controlling tea aphids were attracted by natural compounds such as nerol from tea flowers, n-octanol from intact tea shoots, and geraniol, methyl salicylate, benzaldehyde, and hexanal from aphid-damaged tea shoots.

At Entomological Society of America (ESA) annual meetingss, California Department of Food and Agriculture (CDFA) officials report that T. Kanzawa’s 1939 translation of Professor Dr. Shonen Matsumura‘s 1931 book, 6000 Illustrated Insects of Japan-Empire, is still used to help with identification and control of invasive insect pests like the dusky-winged fruit fly (Drosophila suzukii). Oregon entomologist Jana Lee told the ESA that the Japanese get 100% fruit fly protection by placing 0.98 mm (0.04 inch) mesh over blueberries 20 days pre-harvest. After the harvest, 100% of fruit fly eggs and newly hatched larvae on cherries are killed by holding the fruit at 1.6-2.2 C (29-36 F). In Japanese experiments, fruit fly egg laying in cherries was reduced 30-60% with botanicals such as eucalyptus, neem, and tansy. In other promising Japanese research, Kotaro Konno and Hiroshi Ono told the ESA that latex from the same mulberry leaves used to safely grow silkworms since ancient times could be an effective botanical insecticide against other pests.

Since the 1920s, the USDA has been importing Japanese and Korean biocontrol organisms, like Tiphia wasps to control Oriental beetles and Japanese beetles attacking golf courses, turf, crops, and landscape ornamentals. Japan is currently patenting decoy tree technologies to help stop an explosive outbreak of oak wilt fungus (Raffaelea quercivora), caused by mass attacks of ambrosia beetles (Platypus quercivorus), said Masahiko Tokoro of the Forestry and Forest Products Research Institute (FFPRI) in Ibaraki, Japan (See earlier blog post: The Asian Invasion -Insects in Global Trade).

In South Korean greenhouse tests, Sangwon Kim and Un Taek Lim of Andong National University told the ESA of greenhouse tests showing the superiority of yellow circles against a black background versus conventional rectangular yellow sticky traps for capturing pesky whiteflies and thrips. “In laboratory behavioral studies using different backgrounds and shapes, yellow sticky card with black background was 1.8 times more attractive than sticky card without background, and triangle attracted 1.5 times more sweetpotato whitefly (Bemisia tabaci) than square,” said Kim. Black sticky cards with small yellow circles caught 180% more sweetpotato whitefly than cards with larger circles.


Planet Moth

September 7, 2009

WITH 200,000 known species, Earth is almost Planet Moth. Only beetle species are more numerous. Moths have been denizens of Earth since prehistoric times, long before the ascent of man. Mostly nocturnal, secretive and nondescript, moths play a quiet ecological role, doing some vital pollination of plants and nourishing the food chain by feeding birds, bats, lizards, fish, frogs and many other critters.

Silkworm moths, domesticated as a crop on mulberry trees in China about 5,000 years ago, are famous in the textile industry. Clothes moths are infamous for feeding on garments, and have spurred herbal pest control innovations since ancient times. Humankind has sprayed billions of tons of synthetic pesticides against cotton bollworm moths, Indian meal moths, diamondback moths, cabbage loopers, leafrollers, leafminers, stemborers, codling moths, corn earworms, inchworms, armyworms, spruce budworms, gypsy moths and bagworms, to name but a few. However, alternatives like pheromones are becoming more widely used to monitor, trap, and confuse moths and prevent mating and egg laying (eggs hatch into caterpillars that eat, pupate and beget new moths).

Biocontrol by natural enemies, including birds, bats, toads, spiders and other insects, is part of the ancient planetary rhythm for controlling moths and maintaining global ecological balance. From Texas, Arizona, California and Mexico to China, Russia, Central America and Australia, microscopic Trichogramma wasps are among the most popular insectary-reared natural enemies released to stop moth egg hatching. Cotton growers escaping the pesticide treadmill have traditionally been big users of Trichogramma wasps. Tomatoes, corn, grapes, tree fruits, ornamental nurseries and many other crops also use Trichogramma, green lacewings and a wide array of other natural enemies purchased from Rincon-Vitova and other insectaries to lessen moth attacks and minimize pesticide use.

Of course, the moth wars are not all one-sided. Spray pesticides too often and moths become resistant. And moths can elude and make life challenging for their natural enemies. For example, many moth species respond to bat ultrasound echo-location signals with evasive aerial maneuvers and jamming signals. Moth immune systems may even encapsulate and prevent parasites from providing biocontrol. Each female of one fat Australian moth species can lay 18,000 eggs, the ultimate defense, essentially ensuring survival by sheer numbers.